ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Journal of Chemistry. 2020; 2020: 1-13. Published 2020 May 28. doi: 10.1155/2020/1472923.  (1)
  • Journal of Chemistry. 2020; 2020: 1-9. Published 2020 May 18. doi: 10.1155/2020/8212396.  (1)
  • 94192
Collection
  • Articles  (2)
Publisher
Years
Journal
  • 1
    Publication Date: 2020-05-28
    Description: The concrete/mortar durability performance depends mainly on the environmental conditions, the microstructures, and its chemistry. Cement structures are subject to deterioration by the ingress of aggressive media. This study focused on the effects of Bacillus megaterium and Lysinibacillus sphaericus on flexural strength and chloride ingress in mortar prisms. Microbial solutions with a concentration of 1.0 × 107 cells/ml were mixed with ordinary Portland cement (OPC 42.5 N) to make mortar prisms at a water/cement ratio of 0.5. Four mortar categories were obtained from each bacterium based on mix and curing solution. Mortar prisms of 160 mm × 40 mm × 40 mm were used in this study. Flexural strength across all mortar categories was determined at the 14th, 28th, and 56th day of curing. Mortars prepared and cured using bacterial solution across all curing ages exhibited the highest flexural strength as well as the highest percent flexural strength gain. Lysinibacillus sphaericus mortars across all mortar categories showed higher flexural strength and percent flexural strength gain than Bacillus megaterium mortars. The highest percent flexural strength gain of 33.3% and 37.0% was exhibited by the 28th and 56th day of curing, respectively. The mortars were subjected to laboratory prepared 3.5% by mass of sodium chloride solution under the accelerated ion migration test method for thirty-six hours using a 12 V Direct Current power source after their 28th day of curing. After subjecting the mortar cubes to Cl media, their core powder was analyzed for Cl content. From these results, the apparent diffusion coefficient, Dapp, was approximated from solutions to Fick’s 2nd Law using the error function. Bacillus megaterium mortars across all mortar categories showed lower apparent diffusion coefficient values with the lowest being 2.6456 × 10–10 while the highest value for Lysinibacillus sphaericus mortars was 2.8005 × 10–10. Both of the test bacteria lowered the ordinary Portland cement Cl-ingress but Bacillus megaterium was significantly more effective than Lysinibacillus sphaericus in inhibition.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-18
    Description: Cement-based materials are subject to degradation during their service life. Most of the structural failures have been associated with corrosion of the rebar due to chloride ingress, alkali aggregate reaction, and/or sulfate attack. Microbial activities, especially in waste water collection points such as sewer lines, may compromise the integrity of concrete structures. This study reports an experimental work carried out to determine the effect of Starkeya novella bacteria species on mechanical and microstructural properties of cement mortars. Mortar prisms were prepared from selected ordinary Portland cement (OPC) and Portland pozzolana cement (PPC) in Kenyan markets. Bacterial solution of 1.0 × 107 cell/mL concentration was used as either mix water, curing media, or both. Distilled water was used to prepare mortar prisms for control samples. Compressive strength was determined after the 7th, 28th, 56th, and 90th day of curing. Scanning electron microscopy (SEM) was tested on both bacterial and control mortar prisms after the 28th day of curing. Both PPC and OPC exhibited significant decrease in compressive strength for bacterial-prepared mortars as compared to controls. SEM analysis showed extreme erosion on the microstructure of the microbial mortars. This was denoted by massive formation of ettringite and gypsum which are injurious to mortar/concrete.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...