ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • The Cryosphere Discussions. 2018; 1-34. Published 2018 Dec 21. doi: 10.5194/tc-2018-272. [early online release]  (1)
  • 92598
  • 1
    Publication Date: 2018-12-21
    Description: Mountain permafrost is sensitive to climate change and is expected to gradually degrade in response to the ongoing atmospheric warming trend. Long-term monitoring the permafrost thermal state is a key task, but it is problematic where temperatures are close to 0 °C. The energy exchange is indeed often dominantly related to latent heat effects associated with phase change (ice/water), rather than ground warming or cooling. Consequently, it is difficult to detect significant spatio-temporal variations of ground properties (e.g. ice-water ratio) that occur during the freezing/thawing process with point scale temperature monitoring alone. Hence, electrical methods have become popular in permafrost investigations as the resistivities of ice and water differ by several orders of magnitude, theoretically allowing a clear distinction between frozen and unfrozen ground. In this study we present an assessment of mountain permafrost evolution using long-term electrical resistivity tomography monitoring (ERTM) from a network of permanent sites in the Central Alps. The time series consist of more than 1000 data sets from six sites, where resistivities have been measured on a regular basis for up to twenty years. We identify systematic sources of error and apply automatic filtering procedures during data processing. In order to constrain the interpretation of the results, we analyse inversion results and long-term resistivity changes in comparison with existing borehole temperature time series. Our results show that the resistivity data set provides the most valuable insights at the melting point. A prominent permafrost degradation trend is evident for the longest time series (19 years), but also detectable for shorter time series (about a decade) at most sites. In spite of the wide range of morphological, climatological and geological differences between the sites, the observed inter-annual resistivity changes and long-term tendencies are similar for all sites of the network.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...