ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • American Institute of Physics (AIP)  (2)
  • 2015-2019  (2)
  • Journal of Applied Physics  (2)
  • 805
Collection
  • Articles  (2)
Publisher
Years
  • 2015-2019  (2)
Year
Topic
  • 1
    Publication Date: 2015-12-09
    Description: We investigate the effect of stacking order of bilayer black phosphorene on the device properties of p-MOSFET and n-MOSFET. Two layers of black phosphorus are stacked in three different orders and are used as channel material in both n-MOSFET and p-MOSFET devices. The effects of different stacking orders on electron and hole effective masses and output characteristics of MOSFETs, such as ON currents, ON/OFF ratio, and transconductance are analyzed. Our results show that about 1.37 times and 1.49 times increase in ON current is possible along armchair and zigzag directions, respectively, 55.11% variation in transconductance is possible along armchair direction, by changing stacking orders (AA, AB, and AC) and about 8 times increase in ON current is achievable by changing channel orientation (armchair or zigzag) in p-MOSFET. About 14.8 mV/V drain induced barrier lowering is observed for both p-MOSFET and n-MOSFET, which signifies good immunity to short channel effects.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-24
    Description: We study the optical behavior of an arrangement in which the interface between a linear and non-linear dielectric media is covered by an embedded mono-layer of transition metal dichalcogenides (TMDC). The optical behavior is qualitatively obtained through transmission and reflection coefficients which are a function of the third order non-linear susceptibility of the Kerr-type dielectric and the inter-band optical conductivity of the TMDC mono-layer. The inter-band optical conductivity of the TMDC mono-layer is calculated using the Kubo formalism from the linear response theory. In particular, we theoretically demonstrate that the optical response of this structure can be switched between the total internal reflection and a normal transmission regime by controlling the intensity of the incident radiation. The reflection and transmission functions are shown to be amenable to further control by altering the inter-band optical conductivity of the embedded TMDC mono-layer. The optical conductivity is directly related to its energy dispersion. We specifically choose two TMDC mono-layers, MoS 2 and WSe 2 , which have nearly identical dispersion parameters apart from a much stronger spin-orbit coupling in the latter. The stronger spin-orbit coupling in WSe 2 does not significantly alter the inter-band optical conductivity to manifest as an enhanced reflection spectrum. However, we find that application of an external perturbation such as strain could be effectively used to modulate the overall optical response. We conclude by discussing briefly the phenomenon of optical bistability which arises in materials exhibiting optical non-linearity via an intensity-dependent refractive index.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...