ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • American Institute of Physics (AIP)  (2)
  • American Association for the Advancement of Science (AAAS)
  • 2015-2019  (2)
  • 2000-2004
  • 1990-1994
  • Journal of Applied Physics  (2)
  • 805
  • 1
    Publication Date: 2016-08-06
    Description: Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge 1−x C x (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge 0.998 C 0.002 shows a bandgap reduction supporting these results. Growth of Ge 0.998 C 0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III–V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-07
    Description: Murray's law states that the volumetric flow rate is proportional to the cube of the radius in a cylindrical channel optimized to require the minimum work to drive and maintain the fluid. However, application of this principle to the biomimetic design of micro/nano fabricated networks requires optimization of channels with arbitrary cross-sectional shape (not just circular) and smaller than is valid for Murray's original assumptions. We present a generalized law for symmetric branching that (a) is valid for any cross-sectional shape, providing that the shape is constant through the network; (b) is valid for slip flow and plug flow occurring at very small scales; and (c) is valid for networks with a constant depth, which is often a requirement for lab-on-a-chip fabrication procedures. By considering limits of the generalized law, we show that the optimum daughter-parent area ratio Γ, for symmetric branching into N daughter channels of any constant cross-sectional shape, is Γ = N − 2 / 3 for large-scale channels, and Γ = N − 4 / 5 for channels with a characteristic length scale much smaller than the slip length. Our analytical results are verified by comparison with a numerical optimization of a two-level network model based on flow rate data obtained from a variety of sources, including Navier-Stokes slip calculations, kinetic theory data, and stochastic particle simulations.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...