ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Wiley  (4)
  • MDPI Publishing
  • National Academy of Sciences
  • Oxford University Press
  • Public Library of Science
  • Journal of Geophysical Research JGR - Oceans  (3)
  • 7529
  • 1
    Publication Date: 2016-05-31
    Description: Submarine canyons cutting across the continental shelf can modulate the cross-shelf circulation being effective pathways to bring water from the deep ocean onto the shelf. Here, we use 69 days of moored array observations of temperature and ocean currents collected during the spring of 2013 and winter-spring 2014, as well as shipboard hydrographic surveys and sea-level observations to characterize cold, oxygen poor and nutrient-rich upwelling events along the Biobio Submarine Canyon (BbC). The BbC is located within the Gulf of Arauco at 36° 50'S in the Central Chilean Coast. The majority of subtidal temperature at 150 m depth is explained by subtidal variability in alongshore currents on the canyon with a lag of less than a day ( r 2 =0.65). Using the vertical displacement of the 10° and 10.5°C isotherms, we identified nine upwelling events, lasting between 20 hours to 4.5 days, that resulted in vertical isothermal displacements ranging from 29 to 137 m. The upwelled water likely originated below 200 m. Majority of the cooling events were related with strong northwards (opposite Kelvin wave propagation) flow and low pressure at the coast. Most of these low pressure events occur during relatively weak local wind forcing conditions, and were instead related with Coastal Trapped Waves (CTWs) propagating southwards from lower latitudes. These cold, high-nutrient, low-oxygen waters may be further upwelled and advected into the Gulf of Arauco by wind forcing. Thus, canyon upwelling may be a key driver of biological productivity and oxygen conditions in this Gulf. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-16
    Description: [1]  [1] Current velocity observations from the continental shelves of Coquimbo (~30°S) and Concepcion (~36°30' S), central Chile, were analyzed to evaluate the role of water column stratification and shelf width on baroclinic semidiurnal tidal currents. Semidiurnal barotropic currents off both zones were typically 〈 5 cm/s but depth-dependent semidiurnal flows could exceed 10 cm s -1 during stratified conditions. Both zones are recognized as pronounced upwelling centers, with maximum upwelling-favorable winds in spring and summer, respectively. At the northern zone, stratification was mainly controlled by temperature differences between surface and bottom waters with maximum stratification during summer. The southern zone showed more stratification during winter, because of freshwater input from local rivers. Consequently, greater variability in the baroclinic semidiurnal currents was observed during summer at the northern continental shelf and in winter at the south. In both regions, much of the semidiurnal variability was consistent with an internal wave's first baroclinic mode of wavelengths of ~10-13 km. Nevertheless, during the period of maximum energy fluxes off the north, the second baroclinic mode (wavelength ~7 km) was also important, and matched periods of low upwelling index (relaxation of upwelling-favorable winds). Typical energy fluxes during summer integrated in the water column, related to the semidiurnal internal tides were 0.12 W/m of the northern site and 0.1 W/m off the southern site. Possible sites of internal wave generation off the south were the Biobío submarine canyon and the slope/shelf break, while off the north the generation site was the slope/shelf break.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract In Eastern Boundary Upwelling Systems (EBUS), the upwelling‐favorable wind speeds decrease toward the coast in the so‐called wind drop‐off coastal strip, which has been shown to be influential on the coastal upwelling dynamics, particularly in terms of the relative contributions of Ekman drift and Ekman suction to coastal upwelling. Currently, the wind drop‐off length scale is not properly resolved by the atmospheric forcing of regional ocean models in EBUS, featuring a smoother cross shore wind profile that results in stronger near shore speeds that could partly explain the coastal cold bias often found in those model simulations. Here, as a case study for the upwelling system off Central Chile, the sensitivity of upwelling dynamics to the coastal wind reduction is investigated using a regional oceanic model (ROMS). Coastal wind profiles at different resolutions are first generated using a regional atmospheric model, validated from altimeter data, and then used to correct the coarse atmospheric wind forcing used for sensitivity experiments with ROMS. It is shown that the wind drop‐off correction induces a reduction in the oceanic coastal jet intensity, a stronger poleward undercurrent and a coherent offshore Ekman drift. It also yields a significant reduction of the cold bias along the coast compared to the simulation with “uncorrected” winds. Such reduction cannot be solely explained by the reduced Ekman transport only partially compensated by increase in Ekman suction. The analysis of the surface heat budget reveals in fact that an important contributor to the cooling reduction along the coast in the presence of coastal wind drop‐off is the heat flux term mediated by the reduction in the mixed‐layer depth. Overall, our results illustrate the non‐linear response of the upwelling dynamics to the coastal wind profiles in this region.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-01
    Description: The dynamical response to cross-shelf wind-jet episodes is investigated. The study area is located at the northern margin of the Ebro Shelf, in the Northwestern (NW) Mediterranean Sea, where episodes of strong northwesterly wind occur. In this case, the wind is channeled through the Ebro Valley and intensifies upon reaching the sea, resulting in a wind jet. The wind jet response in terms of water circulation and vertical density structure is investigated using a numerical model. The numerical outputs agree with water current observations from a High Frequency radar. Additionally, temperature, sea-level and wind measurements are also used for the skill assessment of the model. For the wind jet episodes, the numerical results show a well-defined two-layer circulation in the cross-shelf direction, with the surface currents in the direction of the wind. This pattern is consistent with sea-level set-down due to the wind effect. The comparison of the vertical structure response for different episodes revealed that the increase of stratification leads to an onshore displacement of the transition from inner shelf to mid-shelf. In general, the cross-shelf momentum balance during a wind-jet episode exhibits a balance between the frictional terms and the pressure gradient in shallow waters, shifting to a balance between the Coriolis force and the wind stress terms in deeper waters.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...