ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (116)
  • 2010-2014  (116)
  • 2000-2004
  • 1995-1999
  • 1955-1959
  • 1950-1954
  • 2012  (116)
  • Journal of Geophysical Research JGR - Atmospheres  (116)
  • 7528
  • 1
    Publication Date: 2012-10-05
    Description: Gas and fine particle (PM2.5) phase formic acid concentrations were measured with online instrumentation during separate one-month studies in the summer of 2010 in Los Angeles (LA), CA, and Atlanta, GA. In both urban environments, median gas phase concentrations were on the order of a few ppbv (LA 1.6 ppbv, Atlanta 2.3 ppbv) and median particle phase concentrations were approximately tens of ng/m3 (LA 49 ng/m3, Atlanta 39 ng/m3). LA formic acid gas and particle concentrations had consistent temporal patterns; both peaked in the early afternoon and generally followed the trends in photochemical secondary gases. Atlanta diurnal trends were more irregular, but the mean diurnal profile had similar afternoon peaks in both gas and particle concentrations, suggesting a photochemical source in both cities. LA formic acid particle/gas (p/g) ratios ranged between 0.01 and 12%, with a median of 1.3%. No clear evidence that LA formic acid preferentially partitioned to particle water was observed, except on three overcast periods of suppressed photochemical activity. Application of Henry's Law to predict partitioning during these periods greatly under-predicted particle phase formate concentrations based on bulk aerosol liquid water content (LWC) and pH estimated from thermodynamic models. In contrast to LA, formic acid partitioning in Atlanta appeared to be more consistently associated with elevated relative humidity (i.e., aerosol LWC), although p/g ratios were somewhat lower, ranging from 0.20 to 5.8%, with a median of 0.8%. Differences in formic acid gas absorbing phase preferences between these two cities are consistent with that of bulk water-soluble organic carbon reported in a companion paper.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-21
    Description: We perform an observationally based evaluation of the cloud ice water content (CIWC) and path (CIWP) of present-day GCMs, notably 20th century CMIP5 simulations, and compare these results to CMIP3 and two recent reanalyses. We use three different CloudSat + CALIPSO ice water products and two methods to remove the contribution from the convective core ice mass and/or precipitating cloud hydrometeors with variable sizes and falling speeds so that a robust observational estimate can be obtained for model evaluations. The results show that for annual mean CIWP, there are factors of 2–10 in the differences between observations and models for a majority of the GCMs and for a number of regions. However, there are a number of CMIP5 models, including CNRM-CM5, MRI, CCSM4 and CanESM2, as well as the UCLA CGCM, that perform well compared to our past evaluations. Systematic biases in CIWC vertical structure occur below the mid-troposphere where the models overestimate CIWC, with this bias arising mostly from the extratropics. The tropics are marked by model differences in the level of maximum CIWC (∼250–550 hPa). Based on a number of metrics, the ensemble behavior of CMIP5 has improved considerably relative to CMIP3, although neither the CMIP5 ensemble mean nor any individual model performs particularly well, and there are still a number of models that exhibit very large biases despite the availability of relevant observations. The implications of these results on model representations of the Earth radiation balance are discussed, along with caveats and uncertainties associated with the observational estimates, model and observation representations of the precipitating and cloudy ice components, relevant physical processes and parameterizations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-12
    Description: The partitioning of semi-volatile compounds between the gas and particle phase influences the mass, size and chemical composition of the secondary organic aerosols (SOA) formed. Here we investigate the partitioning of water-soluble organic carbon (WSOC) and the formation of SOA in Los Angeles (LA), California and Atlanta, Georgia; urban regions where anthropogenic volatile organic compound (VOC) emissions are dominated by vehicles, but are contrasted by an additional large source of biogenic VOCs exclusive to Atlanta. In Atlanta, evidence for WSOC partitioning to aerosol water is observed throughout the day, but is most prevalent in the morning. During drier periods (RH 〈 70%), the WSOC partitioning coefficient (Fp) was in proportion to the organic mass, suggesting that both particle water and organic aerosol (OA) can serve as an absorbing phase. In contrast, despite the higher average RH, in LA the aerosol water was not an important absorbing phase, instead, Fp was correlated with OA mass. Particle water concentrations from thermodynamic predictions based on measured inorganic aerosol components do not indicate significant differences in aerosol hygroscopicity. The observed different WSOC partitioning behaviors may be attributed to the contrasting VOC mixture between the two cities. In addition, different OA composition may also play a role, as Atlanta OA is expected to have a substantially more aged regional character. These results are consistent with our companion studies that find similar partitioning differences for formic acid and additional contrasts in SOA optical properties. The findings provide direct evidence for SOA formation through an equilibrium partitioning process.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-17
    Description: The impact of aerosols on regional air quality and climate necessitates improved understanding of their emission and microphysical properties. The size distributions of black carbon (BC) and light scattering particles (LSP) were measured with a single particle soot photometer on board the NASA DC-8 aircraft during the ARCTAS mission 2008. Air sampling was made in the air plumes of both urban and forest fire emissions over California during the CARB (California Air Resources Board) phase of the mission. A total of eleven plumes were identified using SO2 and CH3CN tracers for fossil fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BB plumes were significantly higher compared to those in FF plumes. The average mass concentration of BC in BB plumes was more than twice that in FF plumes. Except for the BC/CO ratio, distinct emission ratios of BC/CO2, BC/CH3CN, CH3CN/CO, and CO/CO2 were observed in the plumes from the two sources. Similarly, the microphysical properties of BC and LSP also showed distinct behaviors. The BC count median diameter (CMD) of 115 ± 5 nm in FF plumes was smaller compared to 141 ± 9 nm in the BB plumes. BC aerosols were thickly coated in BB plumes, the average shell/core ratios were 1.47 and 1.24 in BB and FF plumes, respectively. In the total mass of submicron aerosols, organic aerosols constituted about 67% in the FF plumes and 84% in BB plumes. The contribution of sulfate was also significant in the FF plumes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-22
    Description: The planetary boundary layer (PBL) height is a key variable in climate modeling and has an enormous influence on air pollution. A method based on the wavelet covariance transform (WCT) applied to lidar data is tested in this paper as an automated and non-supervised method to obtain the PBL height. The parcel and the Richardson number methods applied to radiosounding data and the parcel method applied to microwave radiometer temperature profiles are used as independent measurements of the PBL height in order to optimize the parameters required for its detection using the WCT method under different atmospheric conditions. This optimization allows for a one-year statistical analysis of the PBL height at midday over Granada (southeastern Spain) from lidar data. The PBL height showed a seasonal cycle, with higher values in summer and spring while lower values were found in winter and autumn. The annual mean was 1.7 ± 0.5 km a.s.l. during the study period. The relationship of the PBL height with aerosol properties is also analyzed for the one-year period.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-13
    Description: Trends in the position of the DJF Austral jet have been analyzed for multimodel ensemble simulations of a subset of high- and low-top models for the periods 1960–2000, 2000–2050, and 2050–2098 under the CMIP5 historical, RCP4.5, and RCP8.5 scenarios. Comparison with ERA-Interim, CFSR and the NCEP/NCAR reanalysis shows that the DJF and annual mean jet positions in CMIP5 models are equatorward of reanalyses for the 1979–2006 mean. Under the RCP8.5 scenario, the mean jet position in the high-top models moves 3 degrees poleward of its 1860–1900 position by 2098, compared to just over 2 degrees for the low-top models. Changes in jet position are linked to changes in the meridional temperature gradient. Compared to low-top models, the high-top models predict greater warming in the tropical upper troposphere due to increased greenhouse gases for all periods considered: up to 0.28 K/decade more in the period 2050–2098 under the RCP8.5 scenario. Larger polar lower-stratospheric cooling is seen in high-top models: −1.64 K/decade compared to −1.40 K/decade in the period 1960–2000, mainly in response to ozone depletion, and −0.41 K/decade compared to −0.12 K/decade in the period 2050–2098, mainly in response to increases in greenhouse gases. Analysis suggests that there may be a linear relationship between the trend in jet position and meridional temperature gradient, even under strong forcing. There were no clear indications of an approach to a geometric limit on the absolute magnitude of the poleward shift by 2100.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-29
    Description: Reliable characterization of particles freshly emitted from the ocean surface requires a sampling method that is able to isolate those particles and prevent them from interacting with ambient gases and particles. Here we report measurements of particles directly emitted from the ocean using a newly developed in situ particle generator (Sea Sweep). The Sea Sweep was deployed alongside R/V Atlantis off the coast of California during May of 2010. Bubbles were generated 0.75 m below the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation on board the ship. The number size distribution of the directly emitted, nascent particles had a dominant mode at 55–60 nm (dry diameter) and secondary modes at 30–40 nm and 200–300 nm. The nascent aerosol was not volatile at 230°C and was not enriched in SO4=, Ca++, K+, or Mg++ above that found in surface seawater. The organic component of the nascent aerosol (7% of the dry submicrometer mass) volatilized at a temperature between 230 and 600°C. The submicrometer organic aerosol characterized by mass spectrometry was dominated by non-oxygenated hydrocarbons. The nascent aerosol at 50, 100, and 145 nm dry diameter behaved hygroscopically like an internal mixture of sea salt with a small organic component. The CCN/CN activation ratio for 60 nm Sea Sweep particles was near 1 for all supersaturations of 0.3 and higher indicating that all of the particles took up water and grew to cloud drop size. The nascent organic aerosol mass fraction did not increase in regions of higher surface seawater chlorophyll but did show a positive correlation with seawater dimethylsulfide (DMS).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-02
    Description: Expressions for momentum and heat fluxes using density as the vertical coordinate are derived. These are applied in the evaluation of fluxes using data from super-pressure balloons drifting on constant density surfaces in the Antarctic lower stratosphere during the VORCORE campaign (September 2005 to February 2006). We focus on the core months of October and November. Vertical fluxes of zonal and meridional momentum are calculated using wind, pressure and height data and the vertical flux of sensible heat is calculated using temperature and height data. Calculations were performed in three band passes covering 1–13 h. We find that the largest fluxes are in the vicinity of the Antarctic Peninsula. In October the fluxes in the low period band pass (1–5 h) account for the main part of the total flux of zonal momentum, consistent with topographically forced waves. During November the vertical fluxes of zonal momentum are found mainly in longer period band passes, consistent with weaker winds. The peak campaign-averaged flux of zonal momentum in the vicinity of the Antarctic Peninsula is ∼−30 mPa. These values are ∼60% larger over the peninsula than those inferred by other authors. The flux of zonal momentum provides a zonal body force of ∼5 m s−1 day−1 assuming a saturated spectrum. We infer downward sensible heat fluxes of ∼3 W m−2. The corresponding cooling rates assuming a saturated spectrum are ∼0.6 K day−1, a significant fraction of the net radiative imbalance in the springtime Antarctic lower stratosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-15
    Description: The Limb Infrared Monitor of the Stratosphere (LIMS) measured polar stratospheric enhancements of NO2 mixing ratios due to energetic particle precipitation (EPP) in the Arctic winter of 1978–1979. Recently reprocessed LIMS data are compared to more recent measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) to place the LIMS measurements in the context of current observations. The amount of NOx (NO + NO2) entering the stratosphere that has been created by EPP in the mesosphere and lower thermosphere (EPP-NOx) has been quantified for the 1978–1979 and 2002–2003 through 2008–2009 Arctic winters. The NO2 enhancements in the LIMS data are similar to those in MIPAS and ACE-FTS data in the Arctic winters of 2002–2003, 2004–2005, 2006–2007, and 2007–2008. The largest enhancement by far is in 2003–2004 (∼2.2 Gmol at 1500 K), which is attributed to a combination of elevated EPP and unusual dynamics that led to strong descent in the upper stratosphere/lower mesosphere in late winter. The enhancements in 2005–2006 and 2008–2009, during which large stratospheric NOx enhancements were caused by a dynamical situation similar to that in 2003–2004, are larger than in all the other years (except 2003–2004) at 3000 K. However, by 2000 K the enhancements in 2005–2006 (2008–2009) are on the same order of magnitude as (smaller than) all other years. These results highlight the importance of the timing of the descent in determining the potential of EPP-NOx for reaching the middle stratosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-21
    Description: A ship-based eddy covariance ozone flux system was deployed to investigate the magnitude and variability of ozone surface fluxes over the open ocean. The flux experiments were conducted on five cruises on board the NOAA research vessel Ronald Brown during 2006–2008. The cruises covered the Gulf of Mexico, the southern as well as northern Atlantic, the Southern Ocean, and the persistent stratus cloud region off Chile in the eastern Pacific Ocean. These experiments resulted in the first ship-borne open-ocean ozone flux measurement records. The median of 10 min oceanic ozone deposition velocity (vd) results from a combined ∼ 1700 h of observations ranged from 0.009 to 0.034 cm s−1. For the Gulf of Mexico cruise (Texas Air Quality Study (TexAQS)) the median vd (interquartile range) was 0.034 (0.009–0.065) cm s−1 (total number of 10 min measurement intervals, Nf = 1953). For the STRATUS cruise off the Chilean coast, the median vd was 0.009 (0.004–0.037) cm s−1 (Nf = 1336). For the cruise from the Gulf of Mexico and up the eastern U.S. coast (Gulf of Mexico and East Coast Carbon cruise (GOMECC)) a combined value of 0.018 (0.006–0.045) cm s−1 (Nf = 1784) was obtained (from 0.019 (−0.014–0.043) cm s−1, Nf = 663 in the Gulf of Mexico, and 0.018 (−0.004–0.045) cm s−1, Nf = 1121 in the North Atlantic region). The Southern Ocean Gas Exchange Experiment (GasEx) and African Monsoon Multidisciplinary Analysis (AMMA), the Southern Ocean and northeastern Atlantic cruises, respectively, resulted in median ozone vd of 0.009 (−0.005–0.026) cm s−1 (Nf = 2745) and 0.020 (−0.003–0.044) cms−1 (Nf = 1147). These directly measured ozone deposition values are at the lower end of previously reported data in the literature (0.01–0.12 cm s−1) for ocean water. Data illustrate a positive correlation (increase) of the oceanic ozone uptake rate with wind speed, albeit the behavior of the relationship appears to differ during these cruises. The encountered wide range of meteorological and ocean biogeochemical conditions is used to investigate fundamental drivers of oceanic O3 deposition and for the evaluation of a recently developed global oceanic O3 deposition modeling system.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...