ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (428)
  • Wiley  (428)
  • American Association for the Advancement of Science (AAAS)
  • National Academy of Sciences
  • Nature Publishing Group
  • Springer Science + Business Media
  • Journal of Geophysical Research JGR - Solid Earth  (376)
  • Journal of Geophysical Research: Solid Earth  (52)
  • 7527
  • Physics  (428)
  • Chemistry and Pharmacology
Collection
  • Articles  (428)
Publisher
  • Wiley  (428)
  • American Association for the Advancement of Science (AAAS)
  • National Academy of Sciences
  • Nature Publishing Group
  • Springer Science + Business Media
  • +
Years
Topic
  • 1
    Publication Date: 2011-07-19
    Description: Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100–220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45° rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises ∼70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-21
    Description: A new shear-wave velocity model offshore southern California is presented that images plate boundary deformation including both thickening and thinning of the crustal and mantle lithosphere at the westernmost edge of the North American continent. The ALBACORE ocean bottom seismometer array, together with 65 stations of the onshore Southern California Seismic Network, are used to measure ambient noise correlation functions and Rayleigh-wave dispersion curves which are inverted for 3D shear-wave velocities. The resulting velocity model defines the transition from continental lithosphere to oceanic, illuminating the complex history and deformation in the region. A transition to the present-day strike-slip regime between the Pacific and North American Plates resulted in broad deformation and capture of the now 〉200-km-wide continental shelf. Our velocity model suggests the persistence of uppermost mantle volcanic processes associated with East Pacific Rise spreading adjacent to the Patton Escarpment, which marks the former subduction of Farallon Plate underneath North America. The most prominent of these seismic structures is a low-velocity anomaly underlying San Juan Seamount, suggesting ponding of magma at the base of the crust, resulting in thickening and ongoing adjustment of the lithosphere due to the localized loading. The velocity model also provides a robust framework for future earthquake location determinations and ground shaking simulations for risk estimates.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-30
    Description: The M w 5.8 earthquake that occurred in Louisa County, Virginia, on 23 August 2011 provided an opportunity to record with several “high density” seismic arrays, in addition to traditional, sparse temporary seismic networks. Traditional aftershock networks consist of a few dozen stations spread over tens of kilometers. As a result, the recorded seismic waveforms suffer from spatial aliasing that is so severe that many types of waveform processing are not applicable. Here we report the results of recording with a large number of oil industry-type instruments deployed at a spacing that is an order of magnitude closer than in traditional deployments. The objective was to image subsurface structure with array methods, using the aftershocks as sources. The dense array recorded continuously for 12 days and consisted of 172 vertical component seismometers that were placed at 200 – 400 m and a 60-km-long 3-component regional profile with stations every 2 km. We demonstrate how processing techniques from Vertical Seismic Profiling (VSP) can produce high resolution 3D reflection images of structure beneath the array. These images display reflectivity that correlates with that observed on a nearby deep reflection survey collected by the USGS. Of particular interest is a strong reflector imaged across multiple profiles. Our analysis demonstrates how a surface array of seismometers can provide 3D images of structure using microearthquake sources when wavefields are sampled sufficiently densely.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-19
    Description: Geophysical observations suggest that mature faults weaken significantly at seismic slip rates. Thermal pressurization and thermal decomposition are two mechanisms commonly used to explain this dynamic weakening. Both rely on pore fluid pressurization with thermal pressurization achieving this through thermal expansion of native solids and pore fluid and thermal decomposition by releasing additional pore fluid during a reaction. Several recent papers have looked at the role thermal pressurization plays during a dynamically propagating earthquake, but no previous models have studied the role of thermal decomposition. In this paper we present the first solutions accounting for thermal decomposition during dynamic rupture, solving for steady-state self-healing slip pulses propagating at a constant rupture velocity. First, we show that thermal decomposition leads to longer slip durations, larger total slips, and a distinctive along-fault slip rate profile. Next, we show that accounting for more than one weakening mechanism allows multiple steady slip pulses to exist at a given background stress, with some solutions corresponding to different balances between thermal pressurization and thermal decomposition, and others corresponding to activating a single reaction multiple times. Finally, we study how the rupture properties depend on the fault properties, and show that the impact of thermal decomposition is largely controlled by the ratio of the hydraulic and thermal diffusivities χ = α h y / α t h and the ratio of pore pressure generated to temperature rise buffered by the reaction P r / E r .
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-15
    Description: The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, is discussed based on five wide-angle seismic profiles acquired during the SanBa experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by [ Klingelhoefer et al. , 2014]. Beneath the continental shelf, a ~100 km wide necking zone (Domain N) is imaged where continental crust thins abruptly from ~40 km to less than 15 km. Toward the ocean, most of the SSPS (Domain A and C) shows velocity ranges, velocity gradients and a Moho interface characteristic of thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7 km) continental crust, its northeastern part depicts a 2–4 km thick upper layer (6.0-6.5 km/s) overlying an anomalous velocity layer (7.0-7.8 km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The deep structure and v-shaped segmentation of the SSPS confirm that an initial episode of rifting occurred there obliquely to the general opening direction of the South Atlantic Central Segment.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-21
    Description: A three-dimensional (3D) electrical resistivity model of Mono Basin in eastern California unveils a complex subsurface filled with zones of partial melt, fluid-filled fracture networks, cold plutons, and regional faults. In 2013, 62 broadband magnetotelluric (MT) stations were collected in an array around southeastern Mono Basin from which a 3D electrical resistivity model was created with a resolvable depth of 35 km. Multiple robust electrical resistivity features were found that correlate with existing geophysical observations. The most robust features are two 300 ± 50 km 3 near vertical conductive bodies (3-10 Ω·m) that underlie the southeast and northeastern margin of Mono Craters below 10 km depth. These features are interpreted as magmatic crystal-melt mush zones of 15 ± 5% interstitial melt surrounded by hydrothermal fluids and are likely sources for Holocene eruptions. Two conductive east-dipping structures appear to connect each magma source region to the surface. A conductive arc-like structure (〈 0.9 Ω·m) links the northernmost mush column at 10 km depth to just below vents near Panum Crater, where the high conductivity suggests the presence of hydrothermal fluids. The connection from the southernmost mush column at 10 km depth to below South Coulée is less obvious with higher resistivity (200 Ω·m) suggestive of a cooled connection. A third, less constrained conductive feature (4-10 Ω·m) 15 km deep extending to 35 km is located west of Mono Craters near the eastern front of the Sierra Nevada escarpment, and is coincident with a zone of sporadic, long–period earthquakes that are characteristic of a fluid-filled (magmatic or metamorphic) fracture network. A resistive feature (10 3 -10 5  Ω·m) located under Aeolian Buttes contains a deep root down to 25 km. The eastern edge of this resistor appears to structurally control the arcuate shape of Mono Craters. These observations have been combined to form a new conceptual model of the magmatic system beneath Mono Craters to a depth of 30 km.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-03
    Description: Here we present the results of the inversion of a new geodetic dataset covering the 2012 Emilia seismic sequence and the following one year of post-seismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks, allows us to constrain the rupture geometries and the coseismic and post-seismic slip distributions for the two main events ( M W 6.1 and 6.0) of the sequence, and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust, and progressively propagated post-seismically towards the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a M W 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding mainshock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-24
    Description: Oceanic crust is accreted through the emplacement of dikes at spreading ridges, but the role of dike intrusion in plate boundary deformation during continental rupture remains poorly understood. Between 2005 and 2009 the ∼70 km long Dabbahu-Manda Hararo rift segment in Ethiopia has experienced 14 large volume dike intrusions, 9 of which were recorded on temporary seismic arrays. A detailed comparison of the seismic characteristics of the seismically monitored dikes is presented with implications for dike intrusion processes and magmatic plumbing systems. All of the migrating swarms of earthquakes started from a 80% of energy is released during the propagation phase, with minimal seismic energy release after the dike propagation ceases. We interpret that faulting and graben formation above the dikes occurs hours after the passage of the dike tip, coincident with the onset of low-frequency earthquakes. Dike lengths show no systematic reduction in length with time, suggesting that topographic loading and stress barriers influence dike length, as well as changes in tectonic stress. The propagation velocities of all the dikes follow a decaying exponential. Northward propagating dikes had faster average velocities than those that propagated southward, suggesting preconditioning by the 2005 megadike, or ongoing heating from a subcrustal magma source north of the midsegment.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-16
    Description: At Cranfield, Mississippi, United States, a large-scale carbon dioxide (CO2) injection through an injection well (∼3,080 m deep) was continuously monitored using U-tube samplers in two observation wells located 68 and 112 m east of the injector. The Lower Tuscaloosa Formation injection zone, which consists of amalgamated fluvial point-bar and channel-fill deposits, presents an interesting environment for studying fluid flow in heterogeneous formations. Continual fluid sampling was carried out during the first month of CO2 injection. Two subsequent tracer tests using sulfur hexafluoride (SF6) and krypton were conducted at different injection rates to measure flow velocity change. The field observations showed significant heterogeneity of fluid flow and for the first time clearly demonstrated that fluid flow evolved with time and injection rate. It was found the wells were connected through numerous, separate flow pathways. CO2 flowed through an increasing fraction of the reservoir and sweep efficiency improved with time. The field study also first documented in situ component exchange between brine and gas phases during CO2 injection. It was found that CH4 degassed from brine and is enriched along the gas–water contact. Multiple injectate flow fronts with high CH4 concentration arrived at different times and led to gas composition fluctuations in the observation wells. The findings provide valuable insights into heterogeneous multiphase flow in rock formations and show that conventional geological models and static fluid flow simulations are unable to fully describe the heterogeneous and dynamic flow during fluid injection.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-05
    Description: A water-filled three-meter diameter spherical shell, geometrically similar to the Earth's core, shows precessionally forced flows. The precessional torque is supplied by the daily rotation of the laboratory by the Earth. We identify the precessionally forced flow to be primarily the spin-over inertial mode, i.e., a uniform vorticity flow whose rotation axis is not aligned with the sphere's rotation axis. A systematic study of the spin-over mode is carried out, showing that the amplitude depends on the ratio of precession to rotation rates (the Poincaré number), in marginal qualitative agreement with Busse's (1968) laminar theory. We find its phase differs significantly though, likely due to topographic effects. At high rotation rates, free shear layers are observed. Comparison with previous computational studies and implications for the Earth's core are discussed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...