ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (35)
  • Wiley  (35)
  • Cell Press
  • Frontiers Media
  • National Academy of Sciences
  • 2015-2019  (22)
  • 1995-1999  (1)
  • 1980-1984  (12)
  • 1955-1959
  • Journal of the American Ceramic Society  (7)
  • Journal of Geophysical Research JGR - Atmospheres  (4)
  • Journal of Geophysical Research: Atmospheres  (4)
  • 6716
  • 7528
Collection
  • Articles  (35)
Publisher
Years
Year
  • 1
    Publication Date: 2019
    Description: Abstract The width of the tropical Hadley circulation (HC) has garnered intense interest in recent decades, owing to the emerging evidence for its expansion in observations and models and to the anticipated impacts on surface climate in its descending branches. To better clarify the causes and impacts of tropical widening, this work generalizes the zonal mean HC to the regional level by defining meridional overturning cells (RC) using the horizontally divergent wind. The edges of the RC are more closely connected to surface hydroclimate than more traditional metrics of regional tropical width (such as the sea level pressure ridge) or even than the zonal mean HC. Simulations reveal a robust weakening of the RC in response to greenhouse gas increases, along with a widening of the RC in some regions. For example, simulated widening of the zonal mean HC in the Southern Hemisphere appears to arise in large part from regional overturning anomalies over the Eastern Pacific, where there is no clear RC. Unforced interannual variability in the position of the zonal mean HC edge is associated with a more general regional widening. These distinct regional signatures suggest that the RCs may be well suited for the attribution of observed circulation trends. The spatial pattern of regional meridional overturning trends in reanalyses corresponds more closely to the pattern associated with unforced interannual variability than to the pattern associated with CO2 forcing, suggesting a large contribution of natural variability to the recent observed tropical widening trends.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-30
    Description: The crystallization mechanisms for Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) glass ceramics were studied using thermophysical property characterization techniques. Differential scanning calorimetry (DSC) revealed two separate exothermic events that were ascribed to the initial growth and growth to coherency of a dendritic phase. It was found that the commonly used Johnson-Mehl-Avrami is not a suitable kinetic model for this material. Rather, the Sestak-Berggren (SB) autocatalytic kinetic model was used to analyze the DSC data and the activation energy for initial growth (259 kJ/mol) and coherency (272 kJ/mol) was calculated using isoconversional methods. The calculated parameters for the SB model were used to compare experimental and calculated values for heat flow during the crystallization of LATP and good fits were found for both exothermic events.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-09
    Description: Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) was synthesized using a glass-ceramics approach through crystallization in a conventional box furnace and a modified microwave furnace. The microstructure of samples that were microwave processed at 1000°C showed a larger average grain size (0.87 μm) when compared with the grain size of conventionally processed samples (0.30 μm) at the same temperature. Microwave processing led to significant enhancement of the conductivity when compared with conventional processing for all crystallization temperatures investigated. The highest total conductivity achieved was of glass microwave processed at 1000°C, with a conductivity of 5.33 × 10 −4  S/cm. This conductivity was five times higher than that of LATP crystallized conventionally at the same temperature.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-08
    Description: Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of Greenhouse Gases (GHG's), we developed the first comprehensive monitoring systems of CO 2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season, showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ±0.23 MtC) compared to the Hestia CO 2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO 2 boundary inflow and to the different prior emissions ( i.e. ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO 2 emissions based on the ensemble mean and quartiles (5.26 - 5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-13
    Description: Barium sodium niobate (BNN) glass-ceramics were successfully synthesized through a controlled crystallization method, using both a conventional and a microwave hybrid heating process. The dielectric properties of glass-ceramics devitrified at different temperatures and conditions were measured. It was found that the dielectric constant increased with higher crystallization temperature, from 750°C to 1000°C, and that growth of the crystalline phase above 900°C was essential to enhancing the relative permittivity and overall energy storage properties of the material. The highest energy storage was found for materials crystallized conventionally at 1000°C with a discharge energy density of 0.13 J/cm 3 at a maximum field of 100 kV/cm. Rapid microwave heating was found to not give significant enhancement in dielectric properties, and coarsening of the ferroelectric crystals was found to be critical for higher energy storage.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Production and transport of NOx by convection is critical as it serves as a precursor to tropospheric ozone, an important greenhouse gas. Lightning serves as the largest source of nitrogen oxides (NOx = NO + NO2) to the upper troposphere (UT) and is one of the largest natural sources of NOx. Interest is placed on the vertical advection of NOx because its lifetime increases to several days in the UT compared to roughly three hours in the lower troposphere and boundary layer. Thus, lightning can play an important role in ozone production within the UT. However, the amount of NOx produced per flash and NOx advection in storms remain uncertain. This study investigates lightning NOx (LNOx) production and transport processes in anomalous (mid‐level positive charge) and normal polarity (mid‐level negative charge) thunderstorms by advecting parcels containing LNOx from the flash channels of over 5600 lightning flashes observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. Results reveal most flash channels occur near 6‐8 km in the normal polarity thunderstorms and 5‐6 km within anomalous polarity thunderstorms. Larger flash rates and stronger updrafts in anomalous storms result in considerably larger LNOx mixing ratios (peaks of 0.75‐1.75 ppb) in the UT compared to normal polarity storms (peaks 〈 0.5 ppb). A slightly lower mean flash LNOx production was also found among all five storms in this study (storm mean values of 72‐158 moles per flash) compared to previous estimates, which generally parameterize LNOx by flash rate rather than flash rate.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract This study systematically examines the regional uncertainties and biases in carbon dioxide (CO2) mole fractions from two of the state‐of‐the‐art global CO2 analysis products, namely the Copernicus Atmosphere Monitoring Service (CAMS) real‐time atmospheric analysis from the European Centre for Medium‐Range Weather Forecasts and the CarbonTracker Near‐Real Time (CT‐NRT) reanalysis from the National Oceanic and Atmospheric Administration, by evaluation against hundreds of hours of airborne in situ measurements from the summer 2016 and winter 2017 Atmospheric Carbon and Transport (ACT) ‐‐ America field campaigns. Both the CAMS and CT‐NRT analyses agree reasonably well with the independent ACT‐America airborne CO2 measurements in the free troposphere, with root‐mean‐square deviations (RMSDs) between analyses and observations generally between 1‐‐2 ppm, but show considerably larger uncertainties in the atmospheric boundary layer where the RMSDs exceed 8 ppm in the lowermost 1 km of the troposphere in summer. There are strong variations in accuracy and bias between seasons, and across three different subregions in the United States (Mid‐Atlantic, Midwest and South), with the largest uncertainties in the Mid‐Atlantic region in summer. Overall, the RMSDs of the CAMS and CT‐NRT analyses against airborne data are comparable to each other, and largely consistent with the differences between the two analyses. The current study provides uncertainty estimates for both analysis products over North America and suggests that these two independent estimates can be used to approximate regional CO2 analysis uncertainties. Both statistics are important in future studies in quantifying the uncertainties in regional CO2 mole fraction and flux estimates.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Abstract (Co,Ni)O solid solutions are considered as promising protective materials of O2‐evolving anodes for Al production. In this context, two solid‐state synthesis methods, namely high‐energy ball milling (HEBM) and calcination, have been evaluated for the synthesis of (Co,Ni)O solid solutions. In all cases, CoxNi1‐xO solid solutions can be formed over the whole composition range. However, undesired WC contaminant is observed using the HEBM method due to the erosion of the milling tools. Their thermal stability in air has been analyzed by thermogravimetric analyzes (TGA) complemented by X‐ray diffraction (XRD) analyses. It is shown that CoxNi1‐xO solid solutions are stable at 1000°C over the whole composition range whereas they are only stable for x ≤46 and x ≤22 at 800°C and 700°C, respectively. For higher Co contents, the formation of Co3O4 is observed. This is a relevant information for their future use for Al production, which can be done at different temperatures (~700‐1000°C) depending of the electrolyte composition. This article is protected by copyright. All rights reserved.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-10
    Description: Anomalous water diffusion into SiO 2 glass was observed in a low temperature range, below ~ 850°C, under a constant water vapor pressure of 355 Torr (47.3 kPa). Both the effective water diffusion coefficient and water solubility exhibited an anomalous time-dependence. For example, water solubility in the low temperature range increased initially, achieving much higher values than expected based on extrapolation from higher temperature data, and then decreased with time toward an equilibrium value. This phenomenon was reported earlier, but a complete explanation was not possible; a new model is presented based upon glass surface compressive stress generation and subsequent surface stress relaxation. Water diffusion can promote stress generation and stress relaxation, both of which affect the reaction between diffused molecular water and the glass structure. By considering these stress effects, the anomalous water diffusion behavior in silica glass is explained. Furthermore, the same model can account for the reversal of external tensile and compressive stress effects on water solubility and diffusivity in silica glass observed after a few hours of heat-treatment at 650°C in 355 Torr water vapor pressure. This article is protected by copyright. All rights reserved.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-05-03
    Description: The present work reports the electrical properties of polycrystalline Ta-doped TiO 2 (0.39 at.% Ta) determined in situ at elevated temperatures (1173 K - 1323 K) in the gas phase of controlled oxygen activity (10 -12 Pa to 10 4 Pa). The effect of oxygen activity on the electrical conductivity and thermoelectric power of TiO 2 is discussed in terms of defect disorder, including (1) the intrinsic electronic disorder that is governed by electronic compensation in the strongly reducing regime, (2) the extrinsic electronic disorder that is governed by electronic charge compensation in the reducing regime and (3) the extrinsic ionic disorder that is governed by ionic compensation in the oxidising regime. It is shown that tantalum ions are incorporated into the titanium sublattice of TiO 2 leading to the formation of donor-type energy levels. The Arrhenius-type plot of the electrical conductivity data leads to the determination of the formation enthalpy terms. The obtained results are considered in terms of the effect of tantalum and oxygen activity on the defect disorder and the associated key performance-related properties in the light-induced partial water oxidation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...