ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Wiley  (4)
  • Cell Press
  • Frontiers Media
  • National Academy of Sciences
  • 2015-2019  (4)
  • 1995-1999
  • 1980-1984
  • 1955-1959
  • Geochemistry Geophysics Geosystems (G3)  (3)
  • 6521
  • 1
    Publication Date: 2016-06-23
    Description: Till from moraines at the heads of six major outlet glaciers in the Transantarctic Mountains (TAM) and from till beneath three West Antarctic ice streams have a ubiquitous zircon U-Pb age population spanning the time of the Ross/Pan-African Orogenies (610-475 Ma). Geo- and thermochronology of detrital minerals in these Antarctic glacial tills reveal two different thermal histories for the central and southern TAM. Double-dating of the zircons reveals a geographically widespread (U-Th)/He (ZHe) population of 180-130 Ma in most of the till samples. Sandstone outcrops at Shackleton Glacier, and three Beacon Supergroup sandstone clasts from three moraines, have ZHe ages that fall entirely within this range. The similar population and proximity of many of the till samples to Beacon outcrops lead us to suggest that this extensive ZHe population in the tills is derived from Beacon Supergroup rocks and reflects the thermal response of the Beacon Basin to the breakup of Gondwana. A second population of older (〉200 Ma) ZHe ages in tills at the head of Byrd, Nimrod and Reedy Glaciers. For the tills at the head of the Nimrod and Byrd Glacier, integrating the double-dated zircon results with 40 Ar/ 39 Ar of hornblende, muscovite and biotite, and U-Pb and (U-Th-Sm)/He double-dates on apatite yields a typical pattern of early rapid orogenic cooling (∼4-10˚C/my) 590-475 Ma after the emplacement of the Granite Harbour Intrusives. Low temperature thermochronometers at these sites yield variable but quite old ages (ZHe 480-70 Ma and AHe 200-70 Ma) that require a long history at low temperature. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Hazard analysis at caldera volcanoes is challenging due to the wide range of eruptive and environmental conditions that can plausibly occur during renewed activity. Taupo volcano, New Zealand, is a frequently active and productive rhyolitic caldera volcano that has hosted the world's youngest known supereruption and numerous smaller explosive events. To assess ashfall hazard from future eruptions, we have simulated atmospheric ash dispersal using the Ash3d model. We consider five eruption scenarios spanning magma volumes of 0.1–500 km3 and investigate the main factors governing ash dispersal in modern atmospheric conditions. Our results are examined in the context of regional synoptic weather patterns (Kidson types) that provide a framework for assessing the variability of ashfall distribution in different wind fields. For the smallest eruptions (~0.1 km3 magma), ashfall thicknesses 〉1 cm are largely confined to the central North Island, with dispersal controlled by day‐to‐day weather and the dominance of westerly winds. With increasing eruptive volume (1–5 km3 magma), ashfall thicknesses 〉1 cm would likely reach major population centers throughout the North Island. Dispersal is less dependent on weather patterns as the formation of a radially‐expanding umbrella cloud forces ash upwind or crosswind, although strong stratospheric winds significantly restrict umbrella spreading. For large eruptions (50–500 km3 magma), powerful expansion of the umbrella cloud results in widespread ashfall at damaging thicknesses (〉10 cm) across most of the North Island and top of the South Island. Synoptic climatology may prove a useful additional technique for long‐term hazard planning at caldera volcanoes.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-09
    Description: Face centered cubic ( fcc ) FeH X was synthesized at pressures of 18 to 68 GPa and temperatures exceeding 1500 K. Thermally quenched samples were evaluated using synchrotron X-ray diffraction (XRD) and nuclear resonant inelastic X-ray scattering (NRIXS) to determine sample composition and sound velocities to 82 GPa. To aid in the interpretation of non-ideal (X≠1) stoichiometries, two equations of state for fcc FeH X were developed, combining an empirical equation of state for iron with two distinct synthetic compression curves for interstitial hydrogen. Matching the density deficit of the Earth's core using these equations of state requires 0.8-1.1 wt.% hydrogen at the core-mantle boundary and 0.2-0.3 wt.% hydrogen at the interface of the inner and outer cores. Furthermore, a comparison of Preliminary Reference Earth Model (PREM) [Dziewonski and Anderson; 1981] to a Birch's law extrapolation of our experimental results suggests that an iron alloy containing ∼0.8 to 1.3 wt.% hydrogen could reproduce both the density and compressional velocity ( V P ) of the Earth's outer core.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-21
    Description: The Explorer segment of northernmost Cascadia is an end-member “warm” subduction zone with very young incoming plate and slow convergence rate. Understanding the megathrust earthquake potential of this type of subduction zone is of both geodynamic and societal importance. Available geodetic observations indicate that the subduction megathrust of the Explorer segment is currently locked to some degree, but the downdip extent of the fault area that is potentially seismogenic is not known. Here we construct finite element models to estimate the thermally allowed megathrust seismogenic zone, using available knowledge of regional plate kinematics, structural data, and heat flow observations as constraints. Despite ambiguities in plate interface geometry constrained by hypocenter locations of low-frequency earthquakes beneath Vancouver Island, the thermal models suggest a potential rupture zone of ∼60 km downdip width located fully offshore. Using dislocation modeling, we further illustrate that a rupture zone of this size, even with a conservative assumption of ∼100 km strike length, can cause significant tsunami-genic deformation. Future seismic and tsunami hazard assessment in northern Cascadia must take the Explorer segment into account. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...