ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (26)
  • Wiley  (26)
  • Copernicus
  • Institute of Physics
  • Geochemistry Geophysics Geosystems (G3)  (16)
  • Journal of Geophysical Research JGR - Planets  (8)
  • 6521
  • 7530
  • 1
    Publication Date: 2015-08-21
    Description: The Australian-Antarctic Ridge (AAR) is one of the largest unexplored regions of the global mid-ocean ridge system. Here, we report a multi-year effort to locate and characterize hydrothermal activity on two 1 st -order segments of the AAR: KR1 and KR2. To locate vent sites on each segment, we used profiles collected by Miniature Autonomous Plume Recorders on rock corers during R/V Araon cruises in March and December of 2011. Optical and oxidation-reduction-potential anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ∼25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The spatial density of hydrothermal activity along KR1 and KR2 (plume incidence of 0.34) is consistent with the global trend for a spreading rate of ∼70 mm/yr. The densest area of hydrothermal activity, named “Mujin”, occurred along the 20-km-long inflated section near the segment center of KR1. Continuous plume surveys conducted in January-February of 2013 on R/V Araon found CH 4 / 3 He (1-15 × 10 6 ) and CH 4 /Mn (0.01-0.5) ratios in the plume samples, consistent with a basaltic-hosted system and typical of ridges with intermediate spreading rates. Additionally, some of the plume samples exhibited slightly higher ratios of H 2 / 3 He and Fe/Mn than others, suggesting that those plumes are supported by a younger hydrothermal system that may have experienced a recent eruption. The Mujin-field was populated by Kiwa crabs and seven-armed Paulasterias starfish previously recorded on the East Scotia Ridge, raising the possibility of circum-Antarctic biogeographic connections of vent fauna. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-29
    Description: The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains: sanidine (21% weight, ~Or 95 ); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent-levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the APXS chemical analysis, the amorphous material is Fe-rich with nearly no other cations — like ferrihydrite. The Windjana sample shows little alteration, and was likely cemented by its magnetite and ferrihydrite. From ChemCam LIBS chemical analyses, Windjana is representative of the Dillinger and Mt. Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K 2 O, ~1.8 times that of Windjana, implying a sediment component with 〉40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na 2 O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as found in similar-age terranes on Earth.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-13
    Description: The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (∼11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit ∼88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e.g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-13
    Description: The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-19
    Description: Numerical models of bedrock valley development generally do not include weathering explicitly. Nevertheless, weathering is an essential process that acts in concert with the transport of loose debris by seepage and runoff to form many bedrock valleys. Here we propose a numerical model for bedrock valley development that explicitly distinguishes weathering and the transport of loose debris and is capable of forming bedrock valleys similar to those observed in nature. In the model, weathering rates are assumed to increase with increasing water availability, a relationship that data suggest likely applies in many water-limited environments. We compare and contrast the model results for cases in which weathering is the result of runoff-induced infiltration versus cases in which it is the result of seepage- or subsurface-driven flow. The surface flow–driven version of our model represents an alternative to the stream-power model that explicitly shows how rates of both weathering and the transport of loose debris are related to topography or water flow. The subsurface flow–driven version of our model can be solved analytically using the linearized Boussinesq approximation. In such cases the model predicts theater-headed valleys that are parabolic in planform, a prediction broadly consistent with the observed shapes of theater-headed bedrock valleys on Mars that have been attributed to a combination of seepage weathering and episodic removal of weathered debris by runoff, seepage, and/or spring discharge.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-11
    Description: Magma mixing plays a prominent role in the origins of intermediate magmas in subduction zones. However, the conditions and timescales of magma mixing and how these are linked to subsequent eruption are unclear. Mount Tauhara is the largest dacitic volcanic complex in the Taupo Volcanic Zone, New Zealand. Dacites from Tauhara Volcano have a complex petrography (Qtz + Plag + Amph + OPx + CPx + Oxi ± Oli) that can only have been produced by magma mixing and offer an ideal opportunity to investigate the processes and timescales involved in assembling dacite magmas in a continental subduction zone. Here we present whole-rock and mineral-specific major and trace element and isotopic data for the Tauhara dacites in order to identify the magma mixing end-members, constrain the physical conditions of mixing, and estimate the timescales and relationships between magma mixing, ascent and eruption. These data reveal that four separate mixing events between crystal-rich rhyolites (77–80 wt.% SiO 2 ; 40 ppm Sr) and crystal-poor mafic magmas of basaltic (48 wt.% SiO 2 ; 1340 ppm Sr) to andesitic (55–59 wt.% SiO 2 ; 490–580 ppm Sr) composition occurred to produce the Tauhara dacites. Mixing took place in well-stirred magma chambers located at mid-crustal depths (8–13 km) at temperatures from 840 to 900ºC. The timescales of magma mixing obtained from Ti diffusion in quartz appear to be largely dependent on the temperature and viscosity contrast between the end-members as andesite and rhyolite magma mixed on timescales of 2–7 months, whereas basalt and rhyolite magmas mixed on timescales of 1–2 years. The short magma mixing timescales, combined with the physical properties (e.g., viscosity and density) of the mixed dacite magmas, as compared with those of the end-member magmas, facilitated the ascent and eruption of dacite magmas at Tauhara volcano.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-22
    Description: The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft to derive the morphometric characteristics of impact basins on the Moon, assess the trends, and interpret the processes involved in the observed morphologic transitions. We first developed a new technique for measuring and calculating the geometric/morphometric properties of impact basins on the Moon. This new method meets a number of criteria that are important for consideration in any topographic analysis of crater landforms (e.g., multiple data points, complete range of azimuths, systematic, reproducible analysis techniques, avoiding effects of post-event processes, robustness with respect to the statistical techniques). The resulting data more completely capture the azimuthal variation in topography that is characteristic of large impact structures. These new calculations extend the well-defined geometric trends for simple and complex craters out to basin-sized structures. Several new geometric trends for peak-ring basins are observed. Basin depth: A factor of two reduction in the depth to diameter (d/Dr) ratio in the transition from complex craters to peak-ring basins may be characterized by a steeper trend than known previously. The d/Dr ratio for peak-ring basins decreases with rim-crest diameter, which may be due to a non-proportional change in excavation cavity growth or scaling, as may occur in the simple to complex transition, or increased magnitude of floor uplift associated with peak-ring formation. Wall height, width, and slope: Wall height and width increase with increasing rim-crest diameter, while wall slope decreases; decreasing ratios of wall width to radius and wall height to depth may reflect burial of wall slump block toes by impact melt redistribution during transient cavity collapse. Melt expulsion from the central basin may help to explain the observed increase in floor height to depth ratio; such central depressions are seen within the largest peak-ring basins. Peak-ring height: Heights of peak rings increase with increasing rim-crest diameter (similar to central peak heights in complex craters); peak-ring height to basin depth ratio also increases, suggesting that floor uplift is even larger in magnitude in the largest peak-ring basins. No correlation is found between peak-ring elevation and distance to the rim wall within a single basin, suggesting that rim-wall slumping does not control the topography of peak rings. Offset of peak rings: Peak rings often show minor offset from the basin center. Enhancement in peak-ring elevation in the direction of offset is generally not observed, although this could be a function of magnitude of offset. Basin volume: Volumes of peak-ring basins are about 40% smaller than the volumes predicted by geophysical estimates of the dimensions of corresponding excavation cavities. This difference indicates that collapse of the transient cavity must result in large inward and upward translations of the cavity floor. These new observations of geometric/morphometric properties of protobasins and peak-ring basins place some constraints on the processes controlling the onset and formation of interior landforms in peak-ring basins. Comparisons of the geometric trends of the inner rings of Orientale basin with those of peak-ring basins are generally consistent with a mega-terrace model for the formation of multi-ring basins.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-16
    Description: The creation of ocean crust by lava eruptions is a fundamental Earth process, involving immediate and immense transfers of heat and chemicals from crust to ocean. This transfer creates event plumes (“megaplumes”), massive ellipsoidal eddies with distinctive and consistent chemical signatures. Here we report the discovery of unique event plumes associated with a 2008 eruption on the Northeast Lau Spreading Center. Instead of a large plume hundreds of meters thick, we detected at least eight individual plumes, each ∼50 m thick and apparently only 1–3 km in diameter, yet still rising 200–1000 m above the eruption site. Low and uniform 3He/heat (0.041 × 10−17 mol/J) and dissolved Mn/heat (0.04 nmol/J) ratios in water samples were diagnostic of event plumes. High H2 concentrations (up to 9123 nM) and basalt shards confirmed extensive interactions between molten lava and event plume source fluids. Remote vehicle observations in 2009 mapped a new, small (1.5–5.8 × 106 m3) lava flow. Our results suggest that event plumes are more variable, and thus perhaps more common, than previously recognized. Small event plumes may be preferentially associated with small or sheet-flow eruptions, and massive event plumes with slowly extruding pillow mounds 25–75 m thick. Despite this correlation, and high H2 concentrations, existing theory and seafloor observations argue that cooling lava cannot transfer heat fast enough to create the buoyancy flux required for event plumes. The creation of event plumes under a broad range of eruption conditions provides new constraints for any theory of their formation.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-01-14
    Description: Indian Ocean ridges north of the Rodriguez Triple Junction remain poorly explored for seafloor hydrothermal activity, with only two active sites confirmed north of 25°S. We conducted water column surveys and sampling in 2007 and 2009 to search for hydrothermal plumes over a segment of the Carlsberg Ridge. Here we report evidence for two separate vent fields, one near 3°42′N, 63°40′E and another near 3°41.5′N, 63°50′E, on a segment that is apparently sparsely magmatic. Both sites appear to be located on off-axis highs at the top of the southern axial valley wall, at depths of ∼3600 m or shallower (∼1000 m above the valley floor). At the 63°40′E site, plume sampling found local maxima in light scattering, temperature anomaly, oxidation-reduction potential (ORP), dissolved Mn, and 3He. No water samples are available from the 63°50′E site, but it showed robust light-scattering and ORP anomalies at multiple depths, implying multiple sources. ORP anomalies are very short-lived, so the strong signals at both sites suggest that fluid sources lie within a few kilometers or less from the plume sampling locations. Although ultramafic rocks have been recovered near these sites, the light-scattering and dissolved Mn anomalies imply that the plumes do not arise from a system driven solely by exothermic serpentinization (e.g., Lost City). Instead, the source fluids may be a product of both ultramafic and basaltic/gabbroic fluid-rock interaction, similar to the Rainbow and Logatchev fields on the Mid-Atlantic Ridge.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-07
    Description: We present multiple lines of evidence for years- to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau Basin over a 16 year period, and a hiatus in summit eruptions from early 2011 through at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009 and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996-2012 period reveal a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ~2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996-2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...