ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • 2020-2022  (12)
  • 5857
Collection
  • Articles  (12)
Publisher
Year
Journal
Topic
  • 1
    Publication Date: 2020-01-01
    Description: Volatile species in protoplanetary discs can undergo a phase change from vapour to solid. These ‘snow lines’ can play vital roles in planet formation at all scales, from dust coagulation to planetary migration. In the outer regions of protoplanetary discs, the temperature profile is set by the absorption of reprocessed stellar light by the solids. Further, the temperature profile sets the distribution of solids through sublimation and condensation at various snow lines. Hence, the snow line position depends on the temperature profile and vice versa. We show that this coupling can be thermally unstable, such that a patch of the disc at a snow line will produce either runaway sublimation or condensation. This thermal instability arises at moderate optical depths, where heating by absorption of reprocessed stellar light from the disc’s atmosphere is optically thick, yet cooling is optically thin. Since volatiles in the solid phase drift much faster than volatiles in the vapour phase, this thermal instability results in a limit cycle. The snow line progressively moves in, condensing volatiles, before receding, as the volatiles sublimate. Using numerical simulations, we study the evolution of the carbon monoxide (CO) snow line. We find the CO snow line is thermally unstable under typical disc conditions and evolves inwards from ∼50 to ∼30 au on time-scales from 1000 to 10 000 yr. The CO snow line spends between ${sim}10{{ m per cent}},mathrm{ and},50{{ m per cent}}$ of its time at smaller separations, where the exact value is sensitive to the total opacity and turbulent viscosity. The evolving snow line also creates ring-like structures in the solid distribution interior to the snow line. Multiple ring-like structures created by moving snow lines could potentially explain the substructures seen in many ALMA images.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-15
    Description: ‘Orion fingers’ are a system of dozens of bow shocks, with the wings of shocks pointing to a common system of origin, which is centred on a dynamically disintegrating system of several massive stars. The shock heads propagate with velocities of up to 300–400 km s−1, but the formation and physical properties of the ‘bullets’ leading the shocks are not known. Here, we summarize two possible scenarios for the formation of the ‘bullets’ and the resulting bow shocks (‘fingers’). In the first scenario, bullets are self-gravitating, Jupiter-mass objects that were formed rapidly and then ejected during the strong dynamical interactions of massive stars and their discs. This scenario naturally explains the similar time-scales for the outflow of bullets and for the dynamical interaction of the massive stars, but has some difficulty explaining the observed high velocities of the bullets. In the second scenario, bullets are formed via hydrodynamic instabilities in a massive, infrared-driven wind, naturally explaining the high velocities and the morphology of outflow, but the bullets are not required to be self-gravitating. The processes that created the Orion fingers are likely not unique to this particular star-forming region and may result in free-floating, high-velocity, core-less planets.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-16
    Description: We present a study of the internal kinematics of two globular clusters, M10 (NGC 6254) and M71 (NGC 6838), using individual radial velocity (RV) measurements obtained from observations using the Hydra multiobject spectrograph on the WIYN 3.5 m telescope. We measured 120 RVs for stars in M10, of which 107 were determined to be cluster members. In M71, we measured 82 RVs and determined 78 of those measurements belonged to cluster members. Using the cluster members, we determine a mean RV of 75.9 ± 4.0 (s.d.) km s−1 and −22.9 ± 2.2 (s.d.) km s−1 for M10 and M71, respectively. We combined the Hydra RV measurements with literature samples and performed a line-of-sight rotational analysis on both clusters. Our analysis has not revealed a statistically significant rotation in either of these clusters with the exception of the inner region (10–117 arcsec) of M10 for which we find hints of a marginally significant rotation with amplitude Vrot = 1.14 ± 0.18 km s−1. For M10, we calculate a central velocity dispersion of σ0 = 5.44 ± 0.61 km s−1, which gives a ratio of the amplitude of rotation to the central velocity dispersion Vrot/σ0 = 0.21 ± 0.04. We also explored the rotation of the multiple stellar populations identified in M10 and M71 and found rotation (or lack thereof) in each population consistent with each other and the cluster global rotation signatures.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-12
    Description: Recently, K2 and TESS have discovered transiting planets with radii between ∼5 and 10 R⊕ around stars with ages
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-21
    Description: We demonstrate the utility of C i as a tracer of photoevaporative winds that are being driven from discs by their ambient UV environment. Commonly observed CO lines only trace these winds in relatively weak UV environments and are otherwise dissociated in the wind at the intermediate to high UV fields that most young stars experience. However, C i traces unsubtle kinematic signatures of a wind in intermediate UV environments (∼1000 G0) and can be used to place constraints on the kinematics and temperature of the wind. In C i position–velocity (PV) diagrams external photoevaporation results in velocities that are faster than those from Keplerian rotation alone, as well as emission from quadrants of PV space in which there would be no Keplerian emission. This is independent of viewing angle because the wind has components that are perpendicular to the azimuthal rotation of the disc. At intermediate viewing angles (∼30–60°) moment 1 maps also exhibit a twisted morphology over large scales (unlike other processes that result in twists, which are typically towards the inner disc). C i is readily observable with ALMA, which means that it is now possible to identify and characterize the effect of external photoevaporation on planet-forming discs in intermediate UV environments.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-07
    Description: Outflows from starburst galaxies can be driven by thermal pressure, radiation, and cosmic rays. We present an analytic phenomenological model that accounts for these contributions simultaneously to investigate their effects on the hydrodynamical properties of outflows. We assess the impact of energy injection, wind opacity, magnetic field strength, and the mass of the host galaxy on flow velocity, temperature, density, and pressure profiles. For an M82-like wind, a thermally dominated driving mechanism is found to deliver the fastest and hottest wind. Radiation-driven winds in typical starburst-galaxy configurations are unable to attain the higher flow velocities and temperatures associated with thermal and cosmic ray-driven systems, leading to higher wind densities which would be more susceptible to cooling and fragmentation at lower altitudes. High opacity winds are more sensitive to radiative driving, but terminal flow velocities are still lower than those achieved by other driving mechanisms at realistic opacities. We demonstrate that variations in the outflow magnetic field can influence its coupling with cosmic rays, where stronger fields enable greater streaming but less driving near the base of the flow, instead with cosmic rays redirecting their driving impact to higher altitudes. The gravitational potential is less important in M82-like wind configurations, and substantial variations in the flow profiles only emerge at high altitude in massive haloes. This model offers a more generalized approach to examine the large-scale hydrodynamical properties for a wide variety of starburst galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-07
    Description: We use a suite of smoothed particle hydrodynamic simulations to investigate the susceptibility of protoplanetary discs to the effects of self-gravity as a function of star–disc properties. We also include passive irradiation from the host star using different models for the stellar luminosities. The critical disc-to-star mass ratio for axisymmetry (for which we produce criteria) increases significantly for low-mass stars. This could have important consequences for increasing the potential mass reservoir in a proto Trappist-1 system, since even the efficient Ormel et al. formation model will be influenced by processes like external photoevaporation, which can rapidly and dramatically deplete the dust reservoir. The aforementioned scaling of the critical Md/M* for axisymmetry occurs in part because the Toomre Q parameter has a linear dependence on surface density (which promotes instability) and only an $M_*^{1/2}$ dependence on shear (which reduces instability), but also occurs because, for a given Md/M*, the thermal evolution depends on the host star mass. The early phase stellar irradiation of the disc (for which the luminosity is much higher than at the zero age main sequence, particularly at low stellar masses) can also play a key role in significantly reducing the role of self-gravity, meaning that even solar mass stars could support axisymmetric discs a factor two higher in mass than usually considered possible. We apply our criteria to the DSHARP discs with spirals, finding that self-gravity can explain the observed spirals so long as the discs are optically thick to the host star irradiation.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-27
    Description: The Sun shows a ∼10 per cent depletion in refractory elements relative to nearby solar twins. It has been suggested that this depletion is a signpost of planet formation. The exoplanet statistics are now good enough to show that the origin of this depletion does not arise from the sequestration of refractory material inside the planets themselves. This conclusion arises because most sun-like stars host close-in planetary systems that are on average more massive than the Sun’s. Using evolutionary models for the protoplanetary discs that surrounded the young Sun and solar twins, we demonstrate that the origin of the depletion likely arises due to the trapping of dust exterior to the orbit of a forming giant planet. In this scenario, a forming giant planet opens a gap in the gas disc, creating a pressure trap. If the planet forms early enough, while the disc is still massive, the planet can trap ≳100 M⊕ of dust exterior to its orbit, preventing the dust from accreting on to the star in contrast to the gas. Forming giant planets can create refractory depletions of $sim 5{-}15{{ m per cent}}$, with the larger values occurring for initial conditions that favour giant planet formation (e.g. more massive discs that live longer). The incidence of solar twins that show refractory depletion matches both the occurrence of giant planets discovered in exoplanet surveys and ‘transition’ discs that show similar depletion patterns in the material that is accreting on to the star.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-01
    Description: Short-period super-Earth-sized planets are common. Explaining how they form near their present orbits requires understanding the structure of the inner regions of protoplanetary discs. Previous studies have argued that the hot inner protoplanetary disc is unstable to the magneto-rotational instability (MRI) due to thermal ionization of potassium, and that a local gas pressure maximum forms at the outer edge of this MRI-active zone. Here we present a steady-state model for inner discs accreting viscously, primarily due to the MRI. The structure and MRI-viscosity of the inner disc are fully coupled in our model; moreover, we account for many processes omitted in previous such models, including disc heating by both accretion and stellar irradiation, vertical energy transport, realistic dust opacities, dust effects on disc ionization and non-thermal sources of ionization. For a disc around a solar-mass star with a standard gas accretion rate ($dot{M}$∼10−8 M⊙ yr−1) and small dust grains, we find that the inner disc is optically thick, and the accretion heat is primarily released near the midplane. As a result, both the disc midplane temperature and the location of the pressure maximum are only marginally affected by stellar irradiation, and the inner disc is also convectively unstable. As previously suggested, the inner disc is primarily ionized through thermionic and potassium ion emission from dust grains, which, at high temperatures, counteract adsorption of free charges onto grains. Our results show that the location of the pressure maximum is determined by the threshold temperature above which thermionic and ion emission become efficient.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-24
    Description: The radius distribution of small, close-in exoplanets has recently been shown to be bimodal. The photoevaporation model predicted this bimodality. In the photoevaporation scenario, some planets are completely stripped of their primordial H/He atmospheres, whereas others retain them. Comparisons between the photoevaporation model and observed planetary populations have the power to unveil details of the planet population inaccessible by standard observations, such as the core mass distribution and core composition. In this work, we present a hierarchical inference analysis on the distribution of close-in exoplanets using forward-models of photoevaporation evolution. We use this model to constrain the planetary distributions for core composition, core mass and initial atmospheric mass fraction. We find that the core-mass distribution is peaked, with a peak-mass of ∼4 M⊕. The bulk core-composition is consistent with a rock/iron mixture that is ice-poor and “Earth-like”; the spread in core-composition is found to be narrow ($lesssim 16\%$ variation in iron-mass fraction at the 2σ level) and consistent with zero. This result favours core formation in a water/ice poor environment. We find the majority of planets accreted a H/He envelope with a typical mass fraction of $sim 4\%$; only a small fraction did not accrete large amounts of H/He and were “born-rocky”. We find four-times as many super-Earths were formed through photoevaporation, as formed without a large H/He atmosphere. Finally, we find core-accretion theory over-predicts the amount of H/He cores would have accreted by a factor of ∼5, pointing to additional mass-loss mechanisms (e.g. “boil-off”) or modifications to core-accretion theory.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...