ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract One of the main problems of hydrologic/hydrodynamic routing models is defining the right set of parameters, especially on inaccessible and/or large basins. Remote Sensing techniques provide measurements of the basin topography, drainage system and channel width, however current methods for estimating riverbed elevation are not as accurate. This paper presents methods of altimetry data assimilation for estimating effective bathymetry of a hydrodynamic model. We tested past altimetry observations from satellites ENVISAT, ICESAT and JASON 2 and synthetic altimetry data from satellites ICESAT 2, JASON 3, SARAL and SWOT to assess future/present mission's potential. The data assimilation (DA) methods used were Direct Insertion, Linear Interpolation, the SCE‐UA optimization algorithm and an adapted Kalman Filter developed with hydraulically based variance and covariance introduced in this paper. The past satellite altimetry data assimilation was evaluated comparing simulated and observed water surface elevation (WSE) while the synthetic altimetry DA were assessed through a direct comparison with a “true” bathymetry. The SCE‐UA and hydraulically based Kalman Filter methods presented the best performances, reducing WSE error in 65% in past altimetry data experiment and reducing biased bathymetry error in 75% in the synthetic experiment, however the latter method is much less computationally expensive. Regarding satellites, it was observed that the performance is related to the satellite inter‐track distance, as higher number of observation sites allows more accurate bed elevation estimation.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-05
    Description: The paper compares forecasts of mean monthly water levels up to six months ahead at Ladário, on the Upper Paraguay River, Brazil, estimated from two long-range dependence models. In one of them, the marked seasonal cycle was removed and a fractionally differenced model was fitted to the transformed series. In the other, a seasonal fractionally differenced model was fitted to water levels without transformation. Forecasts from both models for periods up to six months ahead were compared with forecasts given by simpler “short-range dependence” Box-Jenkins models, one fitted to the transformed series, the other a seasonal autoregressive moving average (ARMA) model. Estimates of parameters in the four models (two “long-range dependence”, two “short-range dependence”) were updated at six-monthly intervals over a 20 year period, and forecasts were compared using root mean square errors (rmse) between water-level forecasts and observed levels. As judged by rmse, performances of the two long-range dependence models, and of the ARMA (1,1) short-range dependence model, were very similar; all three out-performed the seasonal short-range dependence ARMA model. There was evidence that all models performed better during recession periods, than on the hydrograph rising limb.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...