ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Wiley  (6)
  • 2010-2014  (6)
  • Geophysical Research Letters  (2)
  • Basin Research. 2010; 23(2): 123-145. Published 2010 Apr 29. doi: 10.1111/j.1365-2117.2010.00477.x.  (1)
  • Basin Research. 2010; 23(3): 309-331. Published 2010 Nov 16. doi: 10.1111/j.1365-2117.2010.00492.x.  (1)
  • Basin Research. 2011; 23(3): 376-376. Published 2011 Apr 20. doi: 10.1111/j.1365-2117.2011.00505.x.  (1)
  • Basin Research. 2011; 24(4): 437-455. Published 2011 Nov 23. doi: 10.1111/j.1365-2117.2011.00532.x.  (1)
  • 4905
  • 5779
Collection
  • Articles  (6)
Publisher
Years
Year
Journal
Topic
  • 1
    Publication Date: 2011-03-30
    Description: Varied acoustic signals were recorded at Kīlauea Volcano in mid-2007, coincident with dramatic changes in the volcano's activity. Prior to this time period, Pu'u 'Ō'ō crater produced near-continuous infrasonic tremor and was the primary source of degassing and lava effusion at Kīlauea. Collapse and draining of Pu'u 'Ō'ō crater in mid-June produced impulsive infrasonic signals and fluctuations in infrasonic tremor. Fissure eruptions on 19 June and 21 July were clearly located spatially and temporally using infrasound arrays. The 19 June eruption from a fissure approximately mid-way between Kīlauea's summit and Pu'u 'Ō'ō produced infrasound for ∼30 minutes—the only observed geophysical signal associated with the fissure opening. The infrasound signal from the 21 July eruption just east of Pu'u 'Ō'ō shows a clear azimuthal progression over time, indicative of fissure propagation over 12.9 hours. The total fissure propagation rate is relatively slow at 164 m/hr, although the fissure system ruptured discontinuously. Individual fissure rupture times are estimated using the acoustic data combined with visual observations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-04
    Description: Microbaroms are continuous infrasonic signals with a dominant frequency around 0.2 Hz produced by ocean surface waves. Monitoring stations around the globe routinely detect strong microbaroms in the lee of tropical cyclones. We utilize a parametric wind model and a spectral wave model to construct the tropical cyclone wave field and a theoretical acoustic source model to describe the intensity, spatial distribution, and dynamics of microbarom sources. This approach excludes ambient wave conditions and facilitates a parametric analysis to elucidate the source mechanism within the storm. A stationary tropical cyclone produces the strongest microbarom signals at the center, where the waves generated by the cyclonic winds converge. As the tropical cyclone moves forward, the converging wave field becomes less coherent and lags and expands behind the storm center. The models predict a direct relation between the storm forward speed and the location of maximum microbarom source intensity consistent with the infrasonic observations from Hurricane Felicia 2009 in the North Central Pacific.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-23
    Description: A magnetostratigraphy-based chronological framework has been constructed in the Eocene sediments of the Montserrat alluvial fan/fan-delta complex (southeast Ebro Basin), in order to unravel forcing controls on their sequential arrangement and to revise the tectonosedimentary history of the region. The palaeomagnetic study is based on 403 sites distributed along an 1880-m-thick composite section, and provides improved temporal constraints based on an independent correlation to the geomagnetic polarity time scale. The new chronological framework together with sequence stratigraphy and geohistory analysis allow us to investigate the interplay between factors controlling the sequential arrangement of the Montserrat complex at the different temporal scales and to test for orbitally driven climate forcing. The results suggest that the internal stacking pattern in transgressive and regressive sequences sets within the more than 1000-m-thick Milany Composite Megasequence can be explained as the result of subsidence-driven accommodation changes under a general increase of sediment supply. Composite sequences (tens to hundreds of metres thick) likely reflect orbitally forced cyclicity related to the 400-kyr eccentricity cycle, possibly controlled by climatically induced sea-level fluctuations. This study also provides new insights on the deformational history of the area, and shows a correlation between (tectonic) subsidence and forelimb rotation measured on basin-margin deformed strata. Integration of subsidence curves from different sectors of the eastern Ebro Basin allows us to estimate the variable contribution of tectonic loads from the two active basin margins: the Catalan Coastal Ranges and the Pyrenees. The results support the presence of a double flexure from Late Lutetian to Late Bartonian, associated with the two tectonically active margins. From Late Bartonian to Early Priabonian the homogenization of subsidence values is interpreted as the result of the coupling of the two sources of tectonic load. © 2011 The Authors. Basin Research © 2011 Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-16
    Description: The syntectonic continental conglomerates of the South-Central Pyrenees record the late stages of thin-skinned transport of the South-Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ-derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well-defined periods of rapid cooling in the hinterland at ca. 50-40 and ca. 30-25Ma, with another poorly defined cooling episode at ca. 70-60Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re-excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen. © 2010 The Authors. Basin Research © 2010 Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-04-29
    Description: We present new 3D seismic and well data from the Ebro Margin, NW Mediterranean Sea, to shed new light on the processes that formed the Messinian Erosion Surfaces (MES) of the Valencia Trough (Mediterranean Sea). We combine these data with backstripping techniques to provide a minimum estimate of the Messinian sea level fall in the EBRO Margin, as well as coupled isostasy and river incision and transport modeling to offer new constraints on the evolution of the adjacent subaerial Ebro Basin. Four major seismic units are identified on the Cenozoic Ebro Margin, based on the seismic data, including two major prograding megasequences that are separated by a major unconfirmity: the MES. The 3D seismic data provide an unprecedented view of the MES and display characteristic features of subaerial incision, including a drainage network with tributaries of at least five different orders, terraces and meandering rivers. The Messinian landscape presents a characteristic stepped-like profile that allows the margin to be subdivided in three different regions roughly parallel to the coastline. No major tectonic control exists on the boundaries between these regions. The boundary between the two most distal regions marks the location of a relatively stable base level, and this is used in backstripping analysis to estimate the magnitude of sea level drop associated with the Messinian Salinity Crisis on the Ebro Margin. The MES on the Ebro Margin is dominated by a major fluvial system, that we identify here as the Messinian Ebro River. The 3D seismic data, onshore geology and modeling results indicate that the Ebro River drained the Ebro Basin well in advance of the Messinian. © 2010 The Authors. Basin Research © 2010 Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...