ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Copernicus  (2)
  • American Chemical Society
  • Elsevier
  • 2005-2009  (2)
  • Biogeosciences Discussions. 2008; 5(2): 1765-1794. Published 2008 Apr 18. doi: 10.5194/bgd-5-1765-2008.  (1)
  • 42429
Collection
  • Articles  (2)
Publisher
  • Copernicus  (2)
  • American Chemical Society
  • Elsevier
Years
Year
Journal
Topic
  • 1
    Publication Date: 2008-08-07
    Description: The Sahel belt of Africa has been the focus of intensive scientific research since the 1960s, spurred on by the chronic vulnerability of its population to recurring drought and the threat of long-term land degradation. But satellite sensors have recently shown that much of the region has experienced significant increases in photosynthetic activity since the early 1980s, thus re-energizing long-standing debates about the role that people play in shaping land surface status, and thus climate at regional scales. In this paper, we test the hypothesis that people have had a measurable impact on vegetation dynamics in the Sahel for the period 1982–2002. We compare potential natural vegetation dynamics predicted by a process-based ecosystem model with satellite-derived greenness observations, and map the agreement between the two across a geographic grid at a spatial resolution of 0.5°. As aggregated data-model agreement is very good, any local differences between the two could be due to human impact. We then relate this agreement metric to state-of-the-art data sets on demographics, pasture, and cropping. Our findings suggest that demographic and agricultural pressures in the Sahel are unable to account for differences between simulated and observed vegetation dynamics, even for the most densely populated areas. But we do identify a weak, positive correlation between data-model agreement and pasture intensity at the Sahel-wide level. This indicates that herding or grazing does not appreciably affect vegetation dynamics in the region. Either people have not had a significant impact on vegetation dynamics in the Sahel or the identification of a human "footprint" is precluded by inconsistent or subtle vegetation response to complex socio-environmental interactions, and/or limitations in the data used for this study.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-18
    Description: We used satellite remote sensing data; fraction of photosynthetically active radiation absorbed by vegetation (fPAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with tower eddy covariance and meteorological measurements to characterise the light use efficiency parameter (ε) variability and the maximum ε (εmax) for two contrasting Canadian peatlands. Eight-day MODIS fPAR data were acquired for the Mer Bleue (2000 to 2003) and Western Peatland (2004). Flux tower eddy covariance and meteorological measurements were integrated to the same eight-day time stamps as the MODIS fPAR data. A light use efficiency model: GPP=ε * APAR (where GPP is Gross Primary Productivity and APAR is absorbed photosynthetically active radiation) was used to calculated ε. The εmax value for each year (2000 to 2003) at the Mer Bleue bog ranged from 0.58 g C MJ−1 to 0.78 g C MJ−1 and was 0.91 g C MJ−1 in 2004, for the Western Peatland. The average growing season ε for the Mer Bleue bog for the four year period was 0.35 g C MJ−1 and for the Western Peatland in 2004 was 0.57 g C MJ−1. The average snow free period ε for the Mer Bleue bog over the four year period was 0.27 g C MJ−1 and for the Western Peatland in 2004 was 0.39 g C MJ−1. Using the light use efficiency method we calculated the εmax and the annual variability in ε for two Canadian peatlands. We determined that temperature was a growth-limiting factor at both sites Vapour Pressure Deficit (VPD) however was not. MODIS fPAR is a useful tool for the characterization of ε at flux tower sites.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...