ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (96)
  • 2015-2019  (95)
  • 1965-1969
  • 1955-1959  (1)
  • Water Resources Research  (62)
  • Forestry  (7)
  • 3558
  • 4908
  • Architecture, Civil Engineering, Surveying  (79)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (17)
  • Process Engineering, Biotechnology, Nutrition Technology
Collection
  • Articles  (96)
Years
Year
Topic
  • Architecture, Civil Engineering, Surveying  (79)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (17)
  • Process Engineering, Biotechnology, Nutrition Technology
  • Geography  (79)
  • 1
    Publication Date: 2015-11-19
    Description: Upstream source control and Stormwater Treatment Areas (STAs) have reduced phosphorus (P) loads to Water Conservation Area 2A (WCA-2A), a northern Everglades wetland, by three-quarters since year 2000. Nevertheless, large storages of P remain in enriched peat soils and it is unclear how legacy stores will impact spatial and temporal scales of recovery. We re-measured soil P enrichment along a well-studied eutrophication gradient in WCA-2A and applied a profile modeling approach with uncertainty analysis to assess changes in longitudinal soil P gradients 13-years after load reductions. We then analyzed existing internal water P data, using a novel data screening approach, for evidence of lowest possible water P concentrations independent from inflows. We interpret such water P limits as evidence of the strength of internal loading at a location. Results indicate that soil P enrichment persists in the ∼7.5 km long “impacted” zone, with no significant evidence of net advancement or recession, while a large pool of labile P in the flocculent layer consolidated and diminished. There is indeed evidence, both spatial and temporal, that this extensive zone of enriched soil P continues to elevate lowest achievable water P concentrations. The corresponding gradient of elevated water P limits is both receding and diminishing since load reductions, thus providing further evidence toward recovery. However, results also suggest that these “transitory P limits” due to internal loading are likely to persist for decades above water quality targets. These results advance our understanding of recovery in impacted wetlands and are relevant to Everglades restoration. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-17
    Description: Distributed temperature sensing has proven a useful technique for geoscientists to obtain spatially distributed temperature data. When studies require high-resolution temperature data in three spatial dimensions, current practices to enhance the spatial resolution do not suffice. For example, double-diffusive phenomena induce sharp and small-scale temperature patterns in water bodies subject to thermohaline gradients. This article presents a novel approach for a 3D dense distributed temperature sensing setup, the design of which can be customized to the required spatial resolution in each dimension. Temperature is measured along fiber-optic cables that can be arranged as needed. In this case, we built a dense cage of very thin (1.6 mm) cables to ensure that interference with flow patterns was minimal. Application in water bodies with double-diffusion induced sharp temperature gradients shows that the setup is well able to capture small-scale temperature patterns and even detects small unsuspected seeps and potential salt-fingers. However, the potential effect of the setup on the flow patterns requires further study. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-07
    Description: Botryosphaeria canker is likely the most injurious disease for cork production in the Mediterranean Basin. The exclusion of Benomyl, the standard commercial product used to prevent Botryosphaeria canker, from the EU Pesticide Database in 2003 necessitates the search for new alternatives to prevent cork oak cankering. In vitro experiments showed that every fungicide tested at 10 3 mg l –1 active ingredient was effective in reducing mycelial growth of Diplodia corticola . An initial field experiment showed that cork oak trunks sprayed with Thiophanate-methyl, Carbendazim, Difenoconazole, Pyraclostrobin or Copper-Calcium Sulphate under low-humidity environmental conditions exhibited significant decreases in the number and length of trunk lesions, 3 years post-treatment, compared with untreated trees. A second field experiment conducted under extremely wet conditions showed that only Thiophanate-methyl was effective, 2.5 years after treatments, when sprayed just after peeling. Finally, in a third field experiment, under wet conditions, the preventive effectiveness of Thiophanate-methyl, Copper-Calcium Sulphate and a mix of both fungicides was confirmed, although no synergistic effect of the mixture was measured. Copper-Calcium Sulphate or Thiophanate-methyl, when applied immediately after trunk peeling, is effective for preventive control of Botryosphaeria canker on cork oak and may be considered as an effective replacement for Benomyl.
    Print ISSN: 0015-752X
    Electronic ISSN: 1464-3626
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-30
    Description: Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2D and 3D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2D models transport simulations in 3D models are used to demonstrate that pattern continuity is preserved. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-19
    Description: We analyze the probability distribution of the hazard attenuation factor for a non-carcinogenic reactive compound captured by a well in heterogeneous porous formations. The hazard attenuation factor is defined as the ratio between the hazard index HI at a detection well and at the source. Heterogeneity of the aquifer is represented through the Multi-Indicator Model (a collection of blocks of independent permeability) while flow and transport are solved by the means of the Self-Consistent Approach, that is able to deal with any degree of heterogeneity. Due to formation heterogeneity, HI is a random variable and similar for hazard attenuation index. The latter can be fully characterized by its cumulative distribution function (CDF), which in turn can be related to the statistics of the travel time of solute particles, from the source to the detection well. The approach is applied to the case of a solute which undergoes decay and a well with a screen much smaller than the correlation scale of hydraulic conductivity. The results show that the probability of exceeding a given acceptable threshold of the hazard index is significantly affected by the level of heterogeneity comparable to the one observed for the MADE site, and the distance between the source and the well. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-10
    Description: Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km 2 at mid-latitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects sub-monthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time-scale, using in situ measurements of groundwater depth and soil moisture across the US. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-28
    Description: ABSTRACT In many areas of the world, groups of people have attempted to create urban landscapes that follow the principles of environmental sustainability. To this end, groups have devised alternative models, such as ecovillages, where low-impact handling is used and a way of life different from that of large population centers is adopted. Although these villages exist, their efficiency in the conservation of natural resources has not been effectively evaluated. This study evaluated the practices used by two Brazilian ecovillages to conserve water resources to assess whether this new concept of living is indeed successful in meeting sustainability goals. We selected 25 indicators of water sustainability, and using the Compromise Programming Method, we quantified the distance between those landscapes self-referenced as sustainable and an ideal hypothetical scenario. We also interpreted the communities perceptions using the distance between the current situations and the envisioned scenario. We concluded that both ecovillage are far from technically ideal scenario, but the communities have a strong sense of their limitations in implementing water resources conservation. The communities attributed this fact primarily to deficiencies in the shared management. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-02
    Description: Probabilistic forecasts are commonly used to communicate uncertainty in the occurrence of hydro-meteorological events. Although probabilistic forecasting is common, conventional methods for assessing the reliability of these forecasts are approximate. Among the most common methods for assessing reliability, the decomposed Brier Score and Reliability Diagram treat an observed string of events as samples from multiple Binomial distributions, but this is an approximation of the forecast reliability, leading to unnecessary loss of information. This article suggests testing the hypothesis of reliability via the Poisson-Binomial distribution, which is a generalized solution to the Binomial distribution, providing a more accurate model of the probabilistic event forecast verification setting. Further, a two-stage approach to reliability assessment is suggested to identify errors in the forecast related to both bias and overly/insufficiently sharp forecasts. Such a methodology is shown to more effectively distinguish between reliable and unreliable forecasts, leading to more robust probabilistic forecast verification. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-14
    Description: The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and the need to develop and employ models that can predict the impact of groundwater contamination on human health risk under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases. However, natural attenuation can lead to the production of daughter species of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health depends on the interplay between the complex structure of the geological media and the toxicity of each pollutant byproduct. This work addresses human health risk for chemical mixtures resulting from the sequential degradation of a contaminant (such as a chlorinated solvent) under uncertainty through high resolution three-dimensional numerical simulations. We systematically investigate the interaction between aquifer heterogeneity, flow connectivity, contaminant injection model and chemical toxicity in the probabilistic characterization of health risk. We illustrate how chemical-specific travel times control the regime of the expected risk and its corresponding uncertainties. Results indicate conditions where preferential flow paths can favor the reduction of the overall risk of the chemical mixture. The overall human risk response to aquifer connectivity is shown to be non-trivial for multi-species transport. This non-triviality is a result of the interaction between aquifer heterogeneity and chemical toxicity. To quantify the joint effect of connectivity and toxicity in health risk, we propose a toxicity-based Damköhler number. Furthermore, we provide a statistical characterization in terms of low-order moments and the probability density function of the individual and total risks. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-05
    Description: In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by Manning's equation to obtain a dataset containing the elevations of the river beds throughout the basin. The second advancement is the provision of parameter uncertainties and, therefore, the uncertainties in the rated discharge. The third advancement concerns estimating the discharge while considering backwater effects. We analyzed the Amazon Basin using nearly one thousand series that were obtained from ENVISAT and Jason-2 altimetry for more than 100 tributaries. Discharge values and related uncertainties were obtained from the rain-discharge MGB-IPH model. We used a global optimization algorithm based on the Monte Carlo Markov Chain and Bayesian framework to determine the rating curves. The data was randomly allocated into 80% calibration and 20% validation subsets. A comparison with the validation samples produced a Nash-Sutcliffe efficiency ( E ns ) of 0.68. When the MGB discharge uncertainties were less than 5%, the E ns value increased to 0.81 (mean). A comparison with the in situ discharge resulted in an E ns value of 0.71 for the validation samples (and 0.77 for calibration). The E ns values at the mouths of the rivers that experienced backwater effects significantly improved when the mean monthly slope was included in the RC. Our RCs were not mission dependent, and the E ns value was preserved when applying ENVISAT rating curves to Jason-2 altimetry at cross-overs. The cease-to-flow parameter of our RCs provided a good proxy for determining river bed elevation. This proxy was validated against Acoustic Doppler current profiler (ADCP) cross sections with an accuracy of more than 90%. Altimetry measurements are routinely delivered within a few days, and this RC dataset provides a simple and cost-effective tool for predicting discharge throughout the basin in nearly real time. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...