ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • American Association for the Advancement of Science (AAAS)  (16)
  • Science Advances  (16)
  • 228416
Collection
  • Articles  (16)
Publisher
Years
Journal
  • 1
    Publication Date: 2019
    Description: 〈p〉Animals must consider competing information before deciding to eat: internal signals indicating the desirability of food and external signals indicating the risk involved in eating within a particular environment. The behaviors driven by the former are manifestations of hunger, and the latter, anxiety. The connection between pathologic anxiety and reduced eating in conditions like typical depression and anorexia is well known. Conversely, anti-anxiety drugs such as benzodiazepines increase appetite. Here, we show that GABAergic neurons in the diagonal band of Broca (DBB〈sup〉GABA〈/sup〉) are responsive to indications of risk and receive monosynaptic inhibitory input from lateral hypothalamus GABAergic neurons (LH〈sup〉GABA〈/sup〉). Activation of this circuit reduces anxiety and causes indiscriminate feeding. We also found that diazepam rapidly reduces DBB〈sup〉GABA〈/sup〉 activity while inducing indiscriminate feeding. Our study reveals that the LH〈sup〉GABA〈/sup〉-〉DBB〈sup〉GABA〈/sup〉 neurocircuit overrides anxiogenic environmental cues to allow feeding and that this pathway may underlie the link between eating and anxiety-related disorders.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-21
    Description: Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Proinflammatory activation and accumulation of adipose tissue macrophages (ATMs) are associated with increased risk of insulin resistance in obesity. Here, we described the previously unidentified role of selenocysteine insertion sequence–binding protein 2 (SBP2) in maintaining insulin sensitivity in obesity. SBP2 was suppressed in ATMs of diet-induced obese mice and was correlated with adipose tissue inflammation. Loss of SBP2 initiated metabolic activation of ATMs, inducing intracellular reactive oxygen species content and inflammasome, which subsequently promoted IL-1β–associated local proliferation and infiltration of proinflammatory macrophages. ATM-specific knockdown of SBP2 in obese mice promoted insulin resistance by increasing fat tissue inflammation and expansion. Reexpression of SBP2 improved insulin sensitivity. Last, an herbal formula that specifically induced SBP2 expression in ATMs can experimentally improve insulin sensitivity. Clinical observation revealed that it improved hyperglycemia in patients with diabetes. This study identified SBP2 in ATMs as a potential target in rescuing insulin resistance in obesity.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Infrequent extreme events such as large earthquakes pose hazards and have lasting impacts on landscapes and biogeochemical cycles. Sediments provide valuable records of past events, but unambiguously identifying event deposits is challenging because of nonlinear sediment transport processes and poor age control. Here, we have been able to directly track the propagation of a tectonic signal into stratigraphy using reservoir sediments from before and after the 2008 Wenchuan earthquake. Cycles in magnetic susceptibility allow us to define a precise annual chronology and identify the timing and nature of the earthquake’s sedimentary record. The grain size and Rb/Sr ratio of the sediments responded immediately to the earthquake. However, the changes were muted until 2 years after the event, when intense monsoonal runoff drove accumulation of coarser grains and lower Rb/Sr sediments. The delayed response provides insight into how climatic and tectonic agents interact to control sediment transfer and depositional processes.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉The interplay of magnetism and topology is a key research subject in condensed matter physics, which offers great opportunities to explore emerging new physics, such as the quantum anomalous Hall (QAH) effect, axion electrodynamics, and Majorana fermions. However, these exotic physical effects have rarely been realized experimentally because of the lack of suitable working materials. Here, we predict a series of van der Waals layered MnBi〈sub〉2〈/sub〉Te〈sub〉4〈/sub〉-related materials that show intralayer ferromagnetic and interlayer antiferromagnetic exchange interactions. We find extremely rich topological quantum states with outstanding characteristics in MnBi〈sub〉2〈/sub〉Te〈sub〉4〈/sub〉, including an antiferromagnetic topological insulator with the long-sought topological axion states on the surface, a type II magnetic Weyl semimetal with one pair of Weyl points, as well as a collection of intrinsic axion insulators and QAH insulators in even- and odd-layer films, respectively. These notable predictions, if proven experimentally, could profoundly change future research and technology of topological quantum physics.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉The recently discovered topological phase offers new possibilities for spintronics and condensed matter. Even insulating material exhibits conductivity at the edges of certain systems, giving rise to an anomalous quantum Hall effect and other coherent spin transport phenomena, in which heat dissipation is minimized, with potential uses for next-generation energy-efficient electronics. While the metallic surface states of topological insulators (TIs) have been extensively studied, direct comparison of the surface and bulk magnetic properties of TIs has been little explored. We report unambiguous evidence for distinctly enhanced surface magnetism in a prototype magnetic TI, Cr-doped Bi〈sub〉2〈/sub〉Se〈sub〉3〈/sub〉. Using synchrotron-based x-ray techniques, we demonstrate a "three-step transition" model, with a temperature window of ~15 K, where the TI surface is magnetically ordered while the bulk is not. Understanding the dual magnetization process has strong implications for defining a physical model of magnetic TIs and lays the foundation for applications to information technology.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning. It has shown splendid performance in a variety of challenging tasks such as image and video generation. More recently, a quantum version of generative adversarial learning has been theoretically proposed and shown to have the potential of exhibiting an exponential advantage over its classical counterpart. Here, we report the first proof-of-principle experimental demonstration of quantum generative adversarial learning in a superconducting quantum circuit. We demonstrate that, after several rounds of adversarial learning, a quantum-state generator can be trained to replicate the statistics of the quantum data output from a quantum channel simulator, with a high fidelity (98.8% on average) so that the discriminator cannot distinguish between the true and the generated data. Our results pave the way for experimentally exploring the intriguing long-sought-after quantum advantages in machine learning tasks with noisy intermediate–scale quantum devices.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: 〈p〉Magnetic field–induced droplet actuation has attracted substantial research interest in recent years. However, current magnetic-controlled liquids depend primarily on magnetic particles added to a droplet, which serves as the actuator on an open surface. These liquids inevitably suffer from droplet splitting with the magnetic particles or disengaging with the magnet, possibly leading to sample contamination, which severely limits their transport speed and practical applications. Here, we report a simple and additive-free method to fabricate magnetic tubular microactuators for manipulating liquid droplets by magnetism-induced asymmetric deformation, which generates an adjustable capillary force to propel liquids. These magnetic tubular microactuators can drive various liquid droplets with controllable velocity and direction. A speed of 10 cm s〈sup〉–1〈/sup〉 can be achieved, representing the highest speed of liquid motion driven by an external stimulus–induced capillary force in a closed tube found so far.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-19
    Description: Although immune checkpoint blockade has shown initial success for various cancers, only a small subset of patients benefits from this therapy. Some chemotherapeutic drugs have been reported to induce antitumor T cell responses, prompting a number of clinical trials on combination chemoimmunotherapy. However, how to achieve potent immune activation with traditional chemotherapeutics in a manner that is safe, effective, and compatible with immunotherapy remains unclear. We show that high-density lipoprotein–mimicking nanodiscs loaded with doxorubicin (DOX), a widely used chemotherapeutic agent, can potentiate immune checkpoint blockade in murine tumor models. Delivery of DOX via nanodiscs triggered immunogenic cell death of cancer cells and exerted antitumor efficacy without any overt off-target side effects. "Priming" tumors with DOX-carrying nanodiscs elicited robust antitumor CD8 + T cell responses while broadening their epitope recognition to tumor-associated antigens, neoantigens, and intact whole tumor cells. Combination chemoimmunotherapy with nanodiscs plus anti–programmed death 1 therapy induced complete regression of established CT26 and MC38 colon carcinoma tumors in 80 to 88% of animals and protected survivors against tumor recurrence. Our work provides a new, generalizable framework for using nanoparticle-based chemotherapy to initiate antitumor immunity and sensitize tumors to immune checkpoint blockade.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-09-02
    Description: Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...