ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14)
  • 2010-2014  (14)
  • 1990-1994
  • 1965-1969
  • International Journal of Climatology  (8)
  • 1962
  • Geosciences  (14)
  • Process Engineering, Biotechnology, Nutrition Technology
Collection
  • Articles  (14)
Publisher
Years
Year
Journal
Topic
  • Geosciences  (14)
  • Process Engineering, Biotechnology, Nutrition Technology
  • Physics  (14)
  • 1
    Publication Date: 2011-04-02
    Description: We estimate the potential predictability of European winter temperature using factors based on physical studies of their influences on European winter climate. These influences include sea surface temperature patterns in different oceans, major tropical volcanoes, the quasi-biennial oscillation in the tropical stratosphere, and anthropogenic climate change. We first assess the predictive skill for winter mean temperature in northern Europe by evaluating statistical hindcasts made using multiple regression models of temperature for Europe for winter and the January–February season. We follow this up by extending the methodology to all of Europe on a 5° × 5° grid and include rainfall for completeness. These results can form the basis of practical prediction methods. However, our main aim is to develop ideas to act as a benchmark for improving the performance of dynamical climate models. Because we consider only potential predictability, many of the predictors have estimated values coincident with the winter season being forecast. However, in each case, these values are predictable on average with considerable skill in advance of the winter season. A key conclusion is that to reproduce the results of this paper, dynamical forecasting models will require a fully resolved stratosphere. Copyright © 2011 Royal Meteorological Society and British Crown copyright, the Met Office
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-16
    Description: This article examines whether the temporal clustering of flood events can be explained in terms of climate variability or time-varying land-surface state variables. The point process modelling framework for flood occurrence is based on Cox processes, which can be represented as Poisson processes with randomly varying rate of occurrence. In the special case that the rate of occurrence is deterministic, the Cox process simplifies to a Poisson process. Poisson processes represent flood occurrences which are not clustered. The Cox regression model is used to examine the dependence of the rate of occurrence on covariate processes. We focus on 41 stream gauge stations in Iowa, with discharge records covering the period 1950–2009. The climate covariates used in this study are the North Atlantic Oscillation (NAO) and the Pacific/North American Teleconnection (PNA). To examine the influence of land-surface forcing on flood occurrence, the antecedent 30 d rainfall accumulation is considered. In 27 out of 41 stations, either PNA or NAO, or both are selected as significant predictors, suggesting that flood occurrence in Iowa is influenced by large-scale climate indices. Antecedent rainfall, used as a proxy for soil moisture, plays an important role in driving the occurrence of flooding in Iowa. These results point to clustering as an important element of the flood occurrence process. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-15
    Description: A time series of monthly mean surface temperatures taken at Svalbard airport, Spitzbergen, for the period 1912–2010 was examined for changes in melt-season length. The annual melt-season length was constructed from daily temperature estimates based on the monthly data using smoothing splines. We argue that the changes in annual melt-season length are linked to variability in regional sea surface temperatures, the mean Northern Hemisphere surface temperature and the North Atlantic Oscillation (NAO) index. A regression model for the melt-season length with these three parameters as predictors, explained about 40% of the observed variance. The annual mean melt season for the period from 1912 to 2010 was estimated to be 108 days, and the linear trend was 0.17 days/year. The risk of having positive extremes in the melt season increased with increasing Northern Hemisphere surface temperature and the regional sea surface temperatures. On the basis of our study of past observations, the 100-year return length of the melt season at Svalbard was predicted to change from the current 95% confidence interval of 131 (108, 138) days to 175 (109, 242) days with 1 °C warming of both regional sea surface temperature and the mean Northern Hemisphere surface temperature. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-15
    Description: Under global warming the Caribbean is projected to be significantly drier by century's end during its primary rainy season from May to November. The PRECIS regional model is used to simulate the end-of-century (2071–2100) manifestation of the Caribbean Low Level Jet (CLLJ) under two Intergovernmental Panel on Climate Change (IPCC) global warming scenarios. The CLLJ is a feature of the Intra-American seas which during its July peak is dynamically linked to a brief mid-summer drying and interruption of the Caribbean rainy season. The regional model captures the CLLJ's present-day spatial and temporal characteristics reasonably well, simulating both the boreal winter (February) and summer (July) peaks. Under global warming there is an intensification of the CLLJ's core strength from May through November. The intensification is such that by October the CLLJ is of comparable core strength to its present-day peak in July. The persistence of the strong CLLJ beyond July and through November is linked to the perpetuation of a dry pattern in the Caribbean in the future. In contrast, the boreal winter manifestation of the CLLJ is largely unaltered in the future. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-15
    Description: This article examines whether the temporal clustering of flood events can be explained in terms of climate variability or time-varying land-surface state variables. The point process modelling framework for flood occurrence is based on Cox processes, which can be represented as Poisson processes with randomly varying rate of occurrence. In the special case that the rate of occurrence is deterministic, the Cox process simplifies to a Poisson process. Poisson processes represent flood occurrences which are not clustered. The Cox regression model is used to examine the dependence of the rate of occurrence on covariate processes. We focus on 41 stream gauge stations in Iowa, with discharge records covering the period 1950–2009. The climate covariates used in this study are the North Atlantic Oscillation (NAO) and the Pacific/North American Teleconnection (PNA). To examine the influence of land-surface forcing on flood occurrence, the antecedent 30 d rainfall accumulation is considered. In 27 out of 41 stations, either PNA or NAO, or both are selected as significant predictors, suggesting that flood occurrence in Iowa is influenced by large-scale climate indices. Antecedent rainfall, used as a proxy for soil moisture, plays an important role in driving the occurrence of flooding in Iowa. These results point to clustering as an important element of the flood occurrence process. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-22
    Description: A time series of monthly mean surface temperatures taken at Svalbard airport, Spitzbergen, for the period 1912–2010 was examined for changes in melt-season length. The annual melt-season length was constructed from daily temperature estimates based on the monthly data using smoothing splines. We argue that the changes in annual melt-season length are linked to variability in regional sea surface temperatures, the mean Northern Hemisphere surface temperature and the North Atlantic Oscillation (NAO) index. A regression model for the melt-season length with these three parameters as predictors, explained about 40% of the observed variance. The annual mean melt season for the period from 1912 to 2010 was estimated to be 108 days, and the linear trend was 0.17 days/year. The risk of having positive extremes in the melt season increased with increasing Northern Hemisphere surface temperature and the regional sea surface temperatures. On the basis of our study of past observations, the 100-year return length of the melt season at Svalbard was predicted to change from the current 95% confidence interval of 131 (108, 138) days to 175 (109, 242) days with 1 °C warming of both regional sea surface temperature and the mean Northern Hemisphere surface temperature. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-20
    Description: Under global warming the Caribbean is projected to be significantly drier by century's end during its primary rainy season from May to November. The PRECIS regional model is used to simulate the end-of-century (2071–2100) manifestation of the Caribbean Low Level Jet (CLLJ) under two Intergovernmental Panel on Climate Change (IPCC) global warming scenarios. The CLLJ is a feature of the Intra-American seas which during its July peak is dynamically linked to a brief mid-summer drying and interruption of the Caribbean rainy season. The regional model captures the CLLJ's present-day spatial and temporal characteristics reasonably well, simulating both the boreal winter (February) and summer (July) peaks. Under global warming there is an intensification of the CLLJ's core strength from May through November. The intensification is such that by October the CLLJ is of comparable core strength to its present-day peak in July. The persistence of the strong CLLJ beyond July and through November is linked to the perpetuation of a dry pattern in the Caribbean in the future. In contrast, the boreal winter manifestation of the CLLJ is largely unaltered in the future. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-14
    Description: ABSTRACT A workshop was held at the University of the West Indies, Jamaica, in May 2012 to build capacity in climate data rescue and to enhance knowledge about climate change in the Caribbean region. Scientists brought their daily observational surface temperature and precipitation data from weather stations for an assessment of quality and homogeneity and for the calculation of climate indices helpful for studying climate change in their region. This study presents the trends in daily and extreme temperature and precipitation indices in the Caribbean region for records spanning the 1961–2010 and 1986–2010 intervals. Overall, the results show a warming of the surface air temperature at land stations. In general, the indices based on minimum temperature show stronger warming trends than indices calculated from maximum temperature. The frequency of warm days, warm nights and extreme high temperatures has increased while fewer cool days, cool nights and extreme low temperatures were found for both periods. Changes in precipitation indices are less consistent and the trends are generally weak. Small positive trends were found in annual total precipitation, daily intensity, maximum number of consecutive dry days and heavy rainfall events particularly during the period 1986–2010. Correlations between indices and the Atlantic multidecadal oscillation (AMO) index suggest that temperature variability and, to a lesser extent, precipitation extremes are related to the AMO signal of the North Atlantic surface sea temperatures: stronger associations are found in August and September for the temperature indices and in June and October for some of the precipitation indices.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-04-01
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-21
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...