ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • Hydrological Processes. 1993; 7(4): 389-401. Published 1993 Oct 01. doi: 10.1002/hyp.3360070405.  (1)
  • Hydrological Processes. 1995; 9(8): 865-875. Published 1995 Nov 01. doi: 10.1002/hyp.3360090804.  (1)
  • 1951
Collection
  • Articles  (7)
Publisher
Years
Journal
  • 1
    Publication Date: 2002-01-01
    Description: Temperature indices from NOAA-AVHRR data were developed to predict diurnal and seasonal streamflow in Taylor Valley, Antarctica. Masks of the primary land-cover types (snow, glacier ice, lake ice, and soils) were created from Landsat TM data using binary threshold methods. The masks were then scaled to AVHRR resolution using modal selection of pixels and applied to both diurnal and seasonal time series of AVHRR temperature data from the 1994-95 austral summer season. A temperature area index (TAI) was calculated for different land-cover types, as well as for the entire watershed. The TAI was defined as the number of pixels at or above a specified temperature. Diurnal discharge was well characterized by a linear relationship of streamflow to the TAI using a temperature threshold of 259 K from all land class pixels for lower Taylor Valley. Neither index successfully predicted seasonal discharge, most likely due to the mismatch of time scales between the satellite and streamflow data. The TAI has great potential for predicting diurnal streamflow in both Taylor Valley and other remote areas within the McMurdo Dry Valleys of Antarctica. Copyright © 2002 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-01-01
    Description: The fraction of the surface under forest canopies that is visible from above, or the viewable gap fraction (VGF), influences a number of significant physical processes, such as the longwave radiation budget of the surface and the magnitude of diffuse irradiance, In addition, it has significant implications for the remote sensing of the surface. The VGF is dependent on canopy structure, topography and viewing geometry. Although it is difficult to map VGF using current operational remote sensing systems, it is possible to estimate VGF using models based on the three-dimensional structure of forest canopies. Results from hemispheric photographs taken in the field at Fraser Experimental Forest, Colorado, and a geometric optical (GO) model show a trend of rapid decrease in VGF as the view zenith angles diverges from nadir. Whereas there is general agreement between model estimates and the hemispheric photographs, the hemispheric photographs generally show higher VGF values for all view zenith angles. In particular, the higher values for VGF are apparent at high view zenith angles. Use of a more complicated GO radiative transfer model would add the effect of within-crown gaps to those modelled by the GO model and will be used in future studies. VGF maps estimated using the GO model for the Fool Creek intensive study area show a significant decrease in VGF when view zenith angle is increased from 0° (nadir) to 30° viewing from the east. To produce VGF maps in mountain areas, the effect of topography must be taken into account, as changes in slope angle and azimuth are similar to changes in the view zenith angle. Hence, topography can serve either to accentuate or to minimize view zenith angle effects, depending on the slope orientation relative to the viewing position. Copyright © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-10-01
    Description: Time sequences of tracer release from an alpine snowpack were investigated at Mammoth Mountain, California in 1989. Lysimeter discharge and conductivity were recorded at 30 minute intervals. Three separate applications of chemical tracers were added to the snow surface to provide an ionic signal with known origins in the snowpack. Grab samples of meltwater and snow from snow pits were analysed for chemical composition. There were three distinct discharge periods, each characterized by diurnal fluctuations in discharge and conductivity. An inverse relation between discharge and conductivity was interpreted as the combination of a concentrated signal from regions in the pack less subject to leaching and a relatively dilute signal from near the snow surface where the snow was actively melting Conductivity peaks were highest and diurnal changes greatest immediately following periods of freezing. Grab samples showed little correlation with either 30 minute or daily average conductivity. Relative concentrations of individual ions in meltwater were similar between samples. Non‐systematic grab sampling of snowpack meltwater is shown to be potentially misleading because of multiple ionic pulses over the ablation season and strong diurnal fluctuations in chemical concentrations. Continuous measurements of discharge conductivity are a good indicator of diurnal and seasonal changes in the rate of ion release from the snowpack, and should be used to guide sampling. Composite, or time‐integrated samples rather than grab samples may be required to estimate daily and weekly rates of ion release in melting snow. Copyright © 1993 John Wiley & Sons, Ltd
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-11-01
    Description: An approach to spatially distribute a snow process model by segmenting images of land cover, terrain and snow properties is reported. A small 1.7 ha study area with an existing database was selected for this preliminary evaluation. The methodology was carried out over a relatively flat valley bottom at Camp Grayling, Michigan. Meteorological measurements on two sides of the area showed only small differences, so uniform meteorological variables were assumed over the site. Initial snow cover conditions were reconstructed and were distributed over the area using snow maps and sparse snow pit measurements. One metre resolution terrain, soil, vegetation and snow type maps were individually processed into class maps. These layers were then combined to produce a segmented class map, where the attributes from the data layers were known for each class. A one‐dimensional model of snow processes was run for each class, then the results were mapped back into images. Shallow snow conditions provided high sensitivity of ablation patterns to meteorological conditions over a 72 h period. The model performance was assessed by comparing predicted and observed ablation patterns. The error in total snow‐covered area was less than 9%. However, the location errors were greater (predicted snow where no snow was observed and observed snow where no snow was predicted). Extensive error analysis was not justified because of the lack of multiple point measurements of snow properties. Copyright © 1995 John Wiley & Sons, Ltd
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-08-01
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-08-01
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-12-30
    Description: Despite the importance of litter on forest floor albedo and brightness, previous studies have not documented forest floor albedo or litter cover in any detail. Our objective was to describe the seasonal influence of litter on spectral albedos and nadir reflectances of a forest snowpack in a mixed-hardwood stand in the Sleepers River Research Watershed (SRRW) in Danville, Vermont (37°39′ N, 119°2′ W). Experimental measurements in a nearby open area at the Snow Research Station of the SRRW nearly duplicated the spectral trend observed in the forest. Spectral albedo and nadir reflectance measurements in the visible and near infrared (350-2500 nm) transitioned from a gently curved shape through the visible range (for finer-grained, lightly littered snow) to one having a peak in the red/near-infrared (near 760 nm) as the snowmelt season progressed (for coarser-grained, more heavily littered snow). The snowpack became optically thin as surface litter reached high percentages. A point-in-time digital photographic survey of the late-lying snowpacks of three forest stands and the open showed that median litter cover percentages in the coniferous, deciduous, mixed-forest, and an open area were 17.5, 6.1, 1.2, and 0.04 respectively. A Kruskal-Wallis ANOVA on ranks and pairwise comparisons using Dunn's test indicated that the litter covers of the three forest stands were significantly different with 〉95% confidence. The snowpack was relatively shallow (〈1 m), as is typical for this area of Vermont. From a remote-sensing standpoint, and since shallow snow and increased grain size also lower the visible albedo, we can expect that snowpack litter will cause decreased albedo earlier in the snowmelt season, at deeper snow depths, and will tend to shift the maximum albedo peak to the red/NIR range as the melt season progresses. Published in 2001 by John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...