ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Molecular Diversity Preservation International  (1)
  • Plants. 2020; 9(2): 148. Published 2020 Jan 23. doi: 10.3390/plants9020148.  (1)
  • 195053
Collection
  • Articles  (1)
Publisher
  • Molecular Diversity Preservation International  (1)
Years
Journal
Topic
  • 1
    Publication Date: 2020-01-23
    Description: This study investigates the possible involvement of maize aquaporins which are regulated by arbuscular mycorrhizae (AM) in the transport in planta of ammonium and/or urea under well-watered and drought stress conditions. The study also aims to better understand the implication of the AM symbiosis in the uptake of urea and ammonium and its effect on plant physiology and performance under drought stress conditions. AM and non-AM maize plants were cultivated under three levels of urea or ammonium fertilization (0, 3 µM or 10 mM) and subjected or not to drought stress. Plant aquaporins and physiological responses to these treatments were analyzed. AM increased plant biomass in absence of N fertilization or under low urea/ ammonium fertilization, but no effect of the AM symbiosis was observed under high N supply. This effect was associated with reduced oxidative damage to lipids and increased N accumulation in plant tissues. High N fertilization with either ammonium or urea enhanced net photosynthesis (AN) and stomatal conductance (gs) in plants maintained under well-watered conditions, but 14 days after drought stress imposition these parameters declined in AM plants fertilized with high N doses. The aquaporin ZmTIP1;1 was up-regulated by both urea and ammonium and could be transporting these two N forms in planta. The differential regulation of ZmTIP4;1 and ZmPIP2;4 with urea fertilization and of ZmPIP2;4 with NH4+ supply suggests that these two aquaporins may also play a role in N mobilization in planta. At the same time, these aquaporins were also differentially regulated by the AM symbiosis, suggesting a possible role in the AM-mediated plant N homeostasis that deserves future studies.
    Electronic ISSN: 2223-7747
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...