ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Molecular Diversity Preservation International  (1)
  • Computers. 2020; 9(2): 41. Published 2020 May 22. doi: 10.3390/computers9020041.  (1)
  • 184076
  • Computer Science  (1)
  • Natural Sciences in General
  • Medicine
Collection
  • Articles  (1)
Publisher
  • Molecular Diversity Preservation International  (1)
Years
Journal
Topic
  • Computer Science  (1)
  • Natural Sciences in General
  • Medicine
  • 1
    Publication Date: 2020-05-22
    Description: This work presents a methodology to analyze and segment both seismocardiogram (SCG) and ballistocardiogram (BCG) signals in a unified fashion. An unsupervised approach is followed to extract a template of SCG/BCG heartbeats, which is then used to fine-tune temporal waveform annotation. Rigorous performance assessment is conducted in terms of sensitivity, precision, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of annotation. The methodology is tested on four independent datasets, covering different measurement setups and time resolutions. A wide application range is therefore explored, which better characterizes the robustness and generality of the method with respect to a single dataset. Overall, sensitivity and precision scores are uniform across all datasets ( p 〉 0.05 from the Kruskal–Wallis test): the average sensitivity among datasets is 98.7%, with 98.2% precision. On the other hand, a slight yet significant difference in RMSE and MAE scores was found ( p 〈 0.01 ) in favor of datasets with higher sampling frequency. The best RMSE scores for SCG and BCG are 4.5 and 4.8 ms, respectively; similarly, the best MAE scores are 3.3 and 3.6 ms. The results were compared to relevant recent literature and are found to improve both detection performance and temporal annotation errors.
    Electronic ISSN: 2073-431X
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...