ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • 2010-2014  (3)
  • 2011  (3)
  • Frontiers in Biology. 2011; 6(4): 263. Published 2011 Jul 29. doi: 10.1007/s11515-011-1124-8.  (1)
  • Blood. 2011; 118(21): 2452-2452. Published 2011 Nov 18. doi: 10.1182/blood.v118.21.2452.2452.  (1)
  • Blood. 2011; 118(21): 612-612. Published 2011 Nov 18. doi: 10.1182/blood.v118.21.612.612.  (1)
  • 183656
  • 45688
Collection
  • Articles  (3)
Years
  • 2010-2014  (3)
Year
Journal
Topic
  • 1
  • 2
    Publication Date: 2011-11-18
    Description: Abstract 2452 Deletion of chromosome 5q in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients results in loss of miR-146a, which is a negative regulator of the innate immune pathway by targeting TNF receptor associated factor-6 (TRAF6). Therefore, MDS and AML patients with reduced miR-146a expression concomitantly exhibit elevated TRAF6 protein. TRAF6 is an E3 ubiquitin ligase that catalyzes K63-linked polyubiquitin chains on substrates that lead to pathway activation, one of which includes NF-kB. Mice lacking miR-146a, or with overexpression of TRAF6, develop AML- and MDS-like features. Bortezomib (Velcade©), which shows promise alone or in combination with chemotherapy in certain groups of MDS and AML patients, is a selective and reversible inhibitor of the 26S proteasome. Studies on the mechanism of action of Bortezomib have shown that pro-apoptotic proteins are stabilized following proteasome inhibition and contribute to the anti-cancer effect. In this report, paradoxically, we find that Bortezomib induces rapid and complete degradation of TRAF6 protein, but not mRNA, in MDS/AML cell lines and human CD34+ cells. A similar finding was observed when AML cells were treated with MG132, another proteasome inhibitor, indicating that degradation of TRAF6 is secondary to proteasomal inhibition. Interestingly, the reduction in TRAF6 protein coincides with Bortezomib-induced autophagy, as indicated by conversion of LC3B-I to LC3B-II and degradation of SQSTM1/p62, and subsequently with apoptosis in MDS/AML cells. Addition of an autophagy inhibitor (3-methyladenine [3-MA]) to Bortezomib-treated AML cells maintained TRAF6 protein expression and enhanced cell viability. Similarly, TRAF6 degradation was blocked by 3-MA when cells were treated with Rapamycin, an mTOR inhibitor and inducer of autophagy. These findings suggest that a mechanism of Bortezomib-induced cell death in myeloid malignancies involves elimination of TRAF6 protein by autophagosomes. Forced expression of TRAF6 in two AML cell lines partially blocked the cytotoxic effect of Bortezomib, suggesting that TRAF6 is an important target of Bortezomib. To determine whether loss of TRAF6 is sufficient to impede growth of MDS and AML, we used a genetic approach to inhibit TRAF6 in MDS/AML cell lines and bone marrow cells from MDS patients with deletion of chromosome 5q. RNAi-mediated depletion of TRAF6 in MDS and AML samples resulted in impaired malignant hematopoietic stem/progenitor function and rapid apoptosis. To uncover the molecular consequences following loss of TRAF6, we applied gene expression profiling and identified genes relevant to the survival of MDS and AML cells. In summary, these findings implicate TRAF6 in Bortezomib-induced cell death and in the maintenance of myeloid malignancies, and reveal a novel mechanism of TRAF6 regulation through autophagic degradation. Disclosures: Oliva: Celgene: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-18
    Description: Abstract 612 Recent work has shown that acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients exhibit downregulation of miR-146a, a miRNA that negatively regulates the innate immune pathway by targeting IRAK1 and TRAF6. Mice lacking miR-146a show elevated IRAK1 protein expression, and develop AML and MDS-like features resembling the human diseases. Prior to this study, the role of IRAK1 in human myeloid malignancies was unknown. We conducted a comparison of gene expression profiles of 136 cases of MDS CD34+ cells with 17 normal CD34+ cells obtained from ArrayExpress (E-GEOD-19429; Pellagatti et al., Leukemia, 2010). According to this data set, we observed IRAK1 overexpression in MDS patients (P = 0.017). IRAK1 is a serine/threonine kinase, and after phosphorylation on threonine-209 (T209), its kinase activity is induced, thus allowing for subsequent activation of TRAF6 and eventually NF-kB. Interestingly, we observed higher basal levels of phospho-IRAK1 at T209 in MDS and AML samples as compared to normal human CD34+ cells. To investigate the potential role of IRAK1 in AML and MDS, we used genetic and pharmacological approaches to suppress IRAK1 activity in MDS/AML cell lines and bone marrow cells from MDS patients. RNAi-mediated knockdown of IRAK1 in MDS and AML samples resulted in impaired growth of malignant hematopoietic stem/progenitor cells in methylcellulose assays and rapid apoptosis in vitro. In addition, we used a small-molecule inhibitor (benzimidazole analog; Amgen Inc.) to potently inhibit IRAK1 kinase activity. MDS/AML cell lines and MDS patient samples cultured with the IRAK1 inhibitor exhibited impaired growth and increased apoptosis, which coincided with decreased phospho-IRAK1 at T209, and active versions of TRAF6 and NF-kB. Importantly, the inhibition of IRAK1 kinase function is selectively detrimental to MDS and AML samples while preserving normal CD34+ cell viability and function. Given this novel requirement of IRAK1 in MDS and AML, we examined whether Lenalidomide or Bortezomib, two treatment options for MDS/AML and reported immunosuppressors, exhibit anti-leukemic activity in part by targeting IRAK1. We observed that Bortezomib, but not Lenalidomide, inhibits IRAK1 mRNA and protein expression in MDS/AML cells. The cytotoxic effect of Bortezomib can be partly rescued by forced expression of IRAK1 in these cells. To determine the molecular and cellular basis of cell death following loss of IRAK1 function or expression, we applied microarrays to MDS cells treated with IRAK1 inhibitor or transduced with a lentiviral vector encoding an shRNA targeting IRAK1. An overlap of commonly deregulated genes imposed by loss of IRAK1 expression or by the IRAK1 inhibitor revealed unique pathways relevant to the survival of MDS and AML cells. In summary, these findings are the first to implicate IRAK1 in the maintenance of myeloid malignancies and describe the effectiveness of an IRAK1 inhibitor on suppressing MDS and AML viability. Disclosures: Oliva: Celgene: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...