ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bücher
  • Artikel  (5)
  • ISRN Renewable Energy  (4)
  • 170404
Sammlung
  • Bücher
  • Artikel  (5)
Verlag/Herausgeber
Erscheinungszeitraum
Zeitschrift
Thema
  • 1
    Publikationsdatum: 2012-08-17
    Beschreibung: The reliability of photovoltaic modules is highly influenced by the material properties of the backsheet and encapsulation material. Currently, little attention is paid to the permeation properties of the back-sheet material or to its impact on encapsulation degradation and module reliability. We investigated the interaction of different types of solar encapsulation and back-sheet materials. Therefore, various laminates were made to examine the environmental impact on such materials during the aging processes. One focus of our study lies in oxygen and water vapor permeability of the back-sheet materials. The encapsulants used were an ethylene vinyl acetate (EVA), a TPSE (thermoplastic silicone elastomer), an ionomer, and a PVB (polyvinyl butyral). Back-sheet materials were a TPT (Tedlar-PET-Tedlar) foil, a polyamide (PA) sheet and a polyethylene terephthalate (PET) composite film. Raman spectroscopic and FT-IR/vis-reflectance measurements were carried out before and after different accelerated aging procedures. The water vapor and oxygen permeation properties were measured. A clear correlation between the permeation properties and the observed aging behavior was found. The degradation, especially of the encapsulant, resulted in increased fluorescence background in the Raman spectra. It could be shown that the encapsulation-cell-backsheet system should be optimized in order to minimize the stress on the PV-module components.
    Print ISSN: 2090-7451
    Digitale ISSN: 2090-746X
    Thema: Energietechnik
    Publiziert von Hindawi
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-08-16
    Beschreibung: The reliability of photovoltaic modules is highly influenced by the material properties of the backsheet and encapsulation material. Currently, little attention is paid to the permeation properties of the back-sheet material or to its impact on encapsulation degradation and module reliability. We investigated the interaction of different types of solar encapsulation and back-sheet materials. Therefore, various laminates were made to examine the environmental impact on such materials during the aging processes. One focus of our study lies in oxygen and water vapor permeability of the back-sheet materials. The encapsulants used were an ethylene vinyl acetate (EVA), a TPSE (thermoplastic silicone elastomer), an ionomer, and a PVB (polyvinyl butyral). Back-sheet materials were a TPT (Tedlar-PET-Tedlar) foil, a polyamide (PA) sheet and a polyethylene terephthalate (PET) composite film. Raman spectroscopic and FT-IR/vis-reflectance measurements were carried out before and after different accelerated aging procedures. The water vapor and oxygen permeation properties were measured. A clear correlation between the permeation properties and the observed aging behavior was found. The degradation, especially of the encapsulant, resulted in increased fluorescence background in the Raman spectra. It could be shown that the encapsulation-cell-backsheet system should be optimized in order to minimize the stress on the PV-module components.
    Print ISSN: 2090-7451
    Digitale ISSN: 2090-746X
    Thema: Energietechnik
    Publiziert von Hindawi
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-01-22
    Beschreibung: The reliability of photovoltaic modules is highly influenced by the material properties of the backsheet and encapsulation material. Currently, little attention is paid to the permeation properties of the back-sheet material or to its impact on encapsulation degradation and module reliability. We investigated the interaction of different types of solar encapsulation and back-sheet materials. Therefore, various laminates were made to examine the environmental impact on such materials during the aging processes. One focus of our study lies in oxygen and water vapor permeability of the back-sheet materials. The encapsulants used were an ethylene vinyl acetate (EVA), a TPSE (thermoplastic silicone elastomer), an ionomer, and a PVB (polyvinyl butyral). Back-sheet materials were a TPT (Tedlar-PET-Tedlar) foil, a polyamide (PA) sheet and a polyethylene terephthalate (PET) composite film. Raman spectroscopic and FT-IR/vis-reflectance measurements were carried out before and after different accelerated aging procedures. The water vapor and oxygen permeation properties were measured. A clear correlation between the permeation properties and the observed aging behavior was found. The degradation, especially of the encapsulant, resulted in increased fluorescence background in the Raman spectra. It could be shown that the encapsulation-cell-backsheet system should be optimized in order to minimize the stress on the PV-module components.
    Print ISSN: 2090-7451
    Digitale ISSN: 2090-746X
    Thema: Energietechnik
    Publiziert von Hindawi
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2012-10-17
    Beschreibung: The reliability of photovoltaic modules is highly influenced by the material properties of the backsheet and encapsulation material. Currently, little attention is paid to the permeation properties of the back-sheet material or to its impact on encapsulation degradation and module reliability. We investigated the interaction of different types of solar encapsulation and back-sheet materials. Therefore, various laminates were made to examine the environmental impact on such materials during the aging processes. One focus of our study lies in oxygen and water vapor permeability of the back-sheet materials. The encapsulants used were an ethylene vinyl acetate (EVA), a TPSE (thermoplastic silicone elastomer), an ionomer, and a PVB (polyvinyl butyral). Back-sheet materials were a TPT (Tedlar-PET-Tedlar) foil, a polyamide (PA) sheet and a polyethylene terephthalate (PET) composite film. Raman spectroscopic and FT-IR/vis-reflectance measurements were carried out before and after different accelerated aging procedures. The water vapor and oxygen permeation properties were measured. A clear correlation between the permeation properties and the observed aging behavior was found. The degradation, especially of the encapsulant, resulted in increased fluorescence background in the Raman spectra. It could be shown that the encapsulation-cell-backsheet system should be optimized in order to minimize the stress on the PV-module components.
    Print ISSN: 2090-7451
    Digitale ISSN: 2090-746X
    Thema: Energietechnik
    Publiziert von Hindawi
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-01-01
    Beschreibung: The reliability of photovoltaic modules is highly influenced by the material properties of the backsheet and encapsulation material. Currently, little attention is paid to the permeation properties of the back-sheet material or to its impact on encapsulation degradation and module reliability. We investigated the interaction of different types of solar encapsulation and back-sheet materials. Therefore, various laminates were made to examine the environmental impact on such materials during the aging processes. One focus of our study lies in oxygen and water vapor permeability of the back-sheet materials. The encapsulants used were an ethylene vinyl acetate (EVA), a TPSE (thermoplastic silicone elastomer), an ionomer, and a PVB (polyvinyl butyral). Back-sheet materials were a TPT (Tedlar-PET-Tedlar) foil, a polyamide (PA) sheet and a polyethylene terephthalate (PET) composite film. Raman spectroscopic and FT-IR/vis-reflectance measurements were carried out before and after different accelerated aging procedures. The water vapor and oxygen permeation properties were measured. A clear correlation between the permeation properties and the observed aging behavior was found. The degradation, especially of the encapsulant, resulted in increased fluorescence background in the Raman spectra. It could be shown that the encapsulation-cell-backsheet system should be optimized in order to minimize the stress on the PV-module components.
    Print ISSN: 2090-7451
    Digitale ISSN: 2090-746X
    Thema: Energietechnik
    Publiziert von Hindawi
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...