ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • 2020-2022  (3)
  • Scientific Reports. 2020; 10(1): 10300. Published 2020 Jun 25. doi: 10.1038/s41598-020-65648-z.  (1)
  • Scientific Reports. 2021; 11(1): 6475. Published 2021 Mar 19. doi: 10.1038/s41598-021-85792-4.  (1)
  • Scientific Reports. 2021; 11(1): 6804. Published 2021 Mar 24. doi: 10.1038/s41598-021-86332-w.  (1)
  • 166185
Collection
  • Articles  (3)
Publisher
Years
Year
Journal
  • 1
    Publication Date: 2020-06-25
    Description: Microtubule affinity regulating kinase (MARK4) is a potential drug target for different types of cancer as it controls the early step of cell division. In this study, we have screened a series of natural compounds and finally identified rosmarinic acid (RA) as a potential inhibitor of MARK4. Molecular docking and 500 ns all-atom simulation studies suggested that RA binds to the active site pocket of MARK4, forming enough number of non-covalent interactions with critical residues and MARK4-RA complex is stable throughout the simulation trajectory. RA shows an excellent binding affinity to the MARK4 with a binding constant (K) of 107 M−1. Furthermore, RA significantly inhibits MARK4 activity (IC50 = 6.204 µM). The evaluation of enthalpy change (∆H) and entropy change (∆S) suggested that the MARK4-RA complex formation is driven by hydrogen bonding and thus complexation process is seemingly specific. The consequence of MARK4 inhibition by RA was further evaluated by cell-based tau-phosphorylation studies, which suggested that RA inhibited the phosphorylation of tau. The treatment of cancer cells with RA significantly controls cell growth and subsequently induces apoptosis. Our study provides a rationale for the therapeutic evaluation of RA and RA-based inhibitors in MARK4 associated cancers and other diseases.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-24
    Description: Cytochrome c (cyt c) is widely used as a model protein to study (i) folding and stability aspects of the protein folding problem and (ii) structure–function relationship from the evolutionary point of view. Databases of cyts c now contain 285 cyt c sequences from different organisms. A sequence alignment of all these proteins with respect to horse cyt c led to several important conclusions. One of them is that Leu94 is always conserved in all 30 mammalian cyts c. It is known that mutation L94G of the wild type (WT) horse cyt c is destabilizing and mutant exists as molten globule under the native condition (buffer pH 6 and 25 °C). We have expressed and purified uniformly labeled (13C and 15N) and unlabeled WT horse cyt c and its L94G mutant. We report that labeling does not affect the thermodynamic stability of proteins. To support this conclusion, the secondary and tertiary structure of each protein in labeled and unlabeled forms was determined by conventional techniques (UV–Vis absorption and circular dichroism spectroscopy).
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: One of the significant proteins that have attracted research groups due to virtue of being a potent selective anticancer drug target and property of triggering apoptosis upon release in cytoplasm is cytochrome c (cyt c). The mechanical transformations due to the macromolecular crowding in membrane in the mammalian cell are proposed to be useful inductors of changes in volume. It is very interesting to know that mitochondrial function were observed to be improved by polyethylene glycol (PEG) interaction, which in turn inhibits the cyt c (a pro-apoptotic cell death factor). In this work, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4 kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV–Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy), which shows noteworthy shifts in the secondary and tertiary structures at higher concentrations of PEG 4 kDa with small changes in the heme-globular interactions. The size distribution changes of native protein treated with various concentrations of the crowder were observed and analyzed by dynamic light scattering (DLS). The interaction studies of the crowder with the protein was observed and analyzed by FTIR, isothermal titration calorimetry, time resolved fluorescence and molecular docking. The investigations suggested that the structural changes in the protein occurred due to soft interactions of PEG 4 kDa, which usually destabilizes proteins. The experimental evidence in this study proposed that crowding could be another approach to mechanical super-competition and free of certain markers that could aid in the identification and control of various diseases. This study suggests that crowders at specific concentrations, which softly interact with proteins, can be exploited as remedy for various diseases.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...