ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Copernicus  (3)
  • American Association for the Advancement of Science (AAAS)
  • American Association of Petroleum Geologists (AAPG)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • 2015-2019  (3)
  • 2000-2004
  • 1975-1979
  • Natural Hazards and Earth System Sciences. 2016; 16(8): 1999-2007. Published 2016 Aug 29. doi: 10.5194/nhess-16-1999-2016.  (1)
  • Natural Hazards and Earth System Sciences. 2018; 18(10): 2741-2768. Published 2018 Oct 24. doi: 10.5194/nhess-18-2741-2018.  (1)
  • Natural Hazards and Earth System Sciences. 2018; 18(11): 2933-2949. Published 2018 Nov 08. doi: 10.5194/nhess-18-2933-2018.  (1)
  • 15994
Collection
  • Articles  (3)
Publisher
  • Copernicus  (3)
  • American Association for the Advancement of Science (AAAS)
  • American Association of Petroleum Geologists (AAPG)
  • American Meteorological Society
  • Blackwell Publishing Ltd
Years
Year
Journal
Topic
  • 1
    Publication Date: 2016-08-29
    Description: A decline in damaging European windstorms has led to a reduction in insured losses in the 21st century. This decline is explored by identifying a damaging windstorm characteristic and investigating how and why this characteristic has changed in recent years. This novel exploration is based on 6103 high-resolution model-generated historical footprints (1979–2014), representing the whole European domain. The footprint of a windstorm is defined as the maximum wind gust speed to occur at a set of spatial locations over the duration of the storm. The area of the footprint exceeding 20 ms−1 over land, A20, is shown to be a good predictor of windstorm damage. This damaging characteristic has decreased in the 21st century, due to a statistically significant decrease in the relative frequency of windstorms exceeding 20 ms−1 in north-western Europe, although an increase is observed in southern Europe. This is explained by a decrease in the quantiles of the footprint wind gust speed distribution above approximately 18 ms−1 at locations in this region. In addition, an increased variability in the number of windstorm events is observed in the 21st century. Much of the change in A20 is explained by the North Atlantic Oscillation (NAO). The correlation between winter total A20 and winter-averaged mean sea-level pressure resembles the NAO pattern, shifted eastwards over Europe, and a strong positive relationship (correlation of 0.715) exists between winter total A20 and winter-averaged NAO. The shifted correlation pattern, however, suggests that other modes of variability may also play a role in the variation in windstorm losses.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-08
    Description: Natural hazards, such as European windstorms, have widespread effects that result in insured losses at multiple locations throughout a continent. Multivariate extreme-value statistical models for such environmental phenomena must therefore accommodate very high dimensional spatial data, as well as correctly representing dependence in the extremes to ensure accurate estimation of these losses. Ideally one would employ a flexible model, able to characterise all forms of extremal dependence. However, such models are restricted to a few dozen dimensions, hence an a priori diagnostic approach must be used to identify the dominant form of extremal dependence. Here, we present various approaches for exploring the dominant extremal dependence class in very high dimensional spatial hazard fields: tail dependency measures, copula fits, and conceptual loss distributions. These approaches are illustrated by application to a data set of high-dimensional historical European windstorm footprints (6103 spatial maps of 3-day maximum gust speeds at 14 872 locations). We find there is little evidence of asymptotic extremal dependency in windstorm footprints. Furthermore, empirical extremal properties and conceptual losses are shown to be well reproduced using Gaussian copulas but not by extremally dependent models such as Gumbel copulas. It is conjectured that the lack of asymptotic dependence is a generic property of turbulent flows. These results open up the possibility of using geostatistical Gaussian process models for fast simulation of windstorm hazard fields.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-24
    Description: This paper discusses how epistemic uncertainties are currently considered in the most widely occurring natural hazard areas, including floods, landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. Our aim is to provide an overview of the types of epistemic uncertainty in the analysis of these natural hazards and to discuss how they have been treated so far to bring out some commonalities and differences. The breadth of our study makes it difficult to go into great detail on each aspect covered here; hence the focus lies on providing an overview and on citing key literature. We find that in current probabilistic approaches to the problem, uncertainties are all too often treated as if, at some fundamental level, they are aleatory in nature. This can be a tempting choice when knowledge of more complex structures is difficult to determine but not acknowledging the epistemic nature of many sources of uncertainty will compromise any risk analysis. We do not imply that probabilistic uncertainty estimation necessarily ignores the epistemic nature of uncertainties in natural hazards; expert elicitation for example can be set within a probabilistic framework to do just that. However, we suggest that the use of simple aleatory distributional models, common in current practice, will underestimate the potential variability in assessing hazards, consequences, and risks. A commonality across all approaches is that every analysis is necessarily conditional on the assumptions made about the nature of the sources of epistemic uncertainty. It is therefore important to record the assumptions made and to evaluate their impact on the uncertainty estimate. Additional guidelines for good practice based on this review are suggested in the companion paper (Part 2).
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...