ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (13)
  • Copernicus  (13)
  • Earth System Dynamics Discussions. 2015; 6(1): 351-406. Published 2015 Feb 26. doi: 10.5194/esdd-6-351-2015.  (1)
  • Earth System Dynamics Discussions. 2015; 6(2): 1395-1443. Published 2015 Aug 11. doi: 10.5194/esdd-6-1395-2015.  (1)
  • Climate of the Past Discussions. 2007; 3(3): 755-769. Published 2007 May 11. doi: 10.5194/cpd-3-755-2007.  (1)
  • Climate of the Past Discussions. 2009; 5(6): 2555-2575. Published 2009 Dec 17. doi: 10.5194/cpd-5-2555-2009.  (1)
  • Climate of the Past Discussions. 2010; 6(4): 1267-1309. Published 2010 Jul 07. doi: 10.5194/cpd-6-1267-2010.  (1)
  • Climate of the Past Discussions. 2010; 6(5): 1811-1852. Published 2010 Sep 23. doi: 10.5194/cpd-6-1811-2010.  (1)
  • Climate of the Past Discussions. 2011; 7(2): 1175-1193. Published 2011 Apr 08. doi: 10.5194/cpd-7-1175-2011.  (1)
  • Climate of the Past Discussions. 2011; 7(5): 3091-3129. Published 2011 Oct 04. doi: 10.5194/cpd-7-3091-2011.  (1)
  • Climate of the Past Discussions. 2013; 9(3): 3321-3370. Published 2013 Jun 21. doi: 10.5194/cpd-9-3321-2013.  (1)
  • Climate of the Past Discussions. 2013; 9(4): 3825-3870. Published 2013 Jul 09. doi: 10.5194/cpd-9-3825-2013.  (1)
  • Climate of the Past Discussions. 2013; 9(4): 4655-4704. Published 2013 Aug 14. doi: 10.5194/cpd-9-4655-2013.  (1)
  • Climate of the Past Discussions. 2013; 9(6): 6683-6732. Published 2013 Dec 23. doi: 10.5194/cpd-9-6683-2013.  (1)
  • 136819
  • 57698
Collection
  • Articles  (13)
Publisher
  • Copernicus  (13)
Years
Journal
Topic
  • 1
    Publication Date: 2015-08-11
    Description: IceBern2D is a vertically integrated ice sheet model to investigate the ice distribution on long timescales under different climatic conditions. It is forced by simulated fields of surface temperature and precipitation of the last glacial maximum and present day climate from a comprehensive climate model. This constant forcing is adjusted to changes in ice elevation. Bedrock sinking and sea level are a function of ice volume. Due to its reduced complexity and computational efficiency, the model is well-suited for extensive sensitivity studies and ensemble simulations on extensive temporal and spatial scales. It shows good quantitative agreement with standardized benchmarks on an artificial domain (EISMINT). Present day and last glacial maximum ice distributions on the Northern Hemisphere are also simulated with good agreement. Glacial ice volume in Eurasia is underestimated due to the lack of ice shelves in our model. The efficiency of the model is utilized by running an ensemble of 400 simulations with perturbed model parameters and two different estimates of the climate at the last glacial maximum. The sensitivity to the imposed climate boundary conditions and the positive degree day factor β, i.e., the surface mass balance, outweighs the influence of parameters that disturb the flow of ice. This justifies the use of simplified dynamics as a means to achieve computational efficiency for simulations that cover several glacial cycles. The sensitivity of the model to changes in surface temperature is illustrated as a hysteresis based on 5 million year long simulations.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-26
    Description: Under the protocols of the Paleoclimate and Coupled Modelling Intercomparison Projects a number of simulations were produced that provide a range of potential climate evolutions from the last millennium to the end of the current century. Here, we present the first simulation with the Community Earth System Model (CESM), which includes an interactive carbon cycle, that continuously covers the last millennium, the historical period, and the twenty-first century. Besides state-of-the-art forcing reconstructions, we apply a modified reconstruction of total solar irradiance to shed light on the issue of forcing uncertainty in the context of the last millennium. Nevertheless, we find that structural uncertainties between different models can still dominate over forcing uncertainty for quantities such as hemispheric temperatures or the land and ocean carbon cycle response. Comparing with other model simulations we find forced decadal-scale variability to occur mainly after volcanic eruptions, while during other periods internal variability masks potentially forced signals and calls for larger ensembles in paleoclimate modeling studies. At the same time, we fail to attribute millennial temperature trends to orbital forcing, as has been suggested recently. The climate-carbon cycle sensitivity in CESM during the last millennium is estimated to be about 1.3 ppm °C−1. However, the dependence of this sensitivity on the exact time period and scale illustrates the prevailing challenge of deriving robust constrains on this quantity from paleoclimate proxies. In particular, the response of the land carbon cycle to volcanic forcing shows fundamental differences between different models. In CESM the tropical land dictates the response to volcanoes with a distinct behavior for large and moderate eruptions. Under anthropogenic emissions, global land and ocean carbon uptake rates emerge from the envelope of interannual natural variability as simulated for the last millennium by about year 1947 and 1877, respectively.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-09-23
    Description: CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes that are well documented in the literature but there is a clear distinction between northern and southern perturbations. Changes in the physical variables affect, in return, the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large re-organizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-07-07
    Description: The variability of the Atlantic meridional overturing circulation (AMOC) strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN) Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST) anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT) in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-20
    Description: Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure, its record in polar ice cores was considered as a proxy for past ice sheet elevation changes. However the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with different insolation history. In our high-resolution record we also find a decrease of 3–5 % (3–4.2 mL kg−1) in TAC as a response to Dansgaard-Oeschger-Events (DO-events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming, but also shows a two-step decline that lasts for several centuries into the warm phase/interstadial. The TAC response is larger than expected considering only local temperature and atmospheric pressure as a driver, pointing to transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-23
    Description: The influence of a reduced Greenland ice sheet (GrIS) on Greenland's surface climate during the Eemian interglacial is studied using a comprehensive climate model. We find a distinct impact of changes in the GrIS topography on Greenland's surface air temperatures (SAT) even when correcting for changes in surface elevation which influences SAT through the lapse rate effect. The resulting lapse rate corrected SAT anomalies are thermodynamically driven by changes in the local surface energy balance rather than dynamically caused through anomalous advection of warm/cold air masses. The large-scale circulation is indeed very stable among all sensitivity experiments and the NH flow pattern does not depend on Greenland's topography in the Eemian. In contrast, Greenland's surface energy balance is clearly influenced by changes in the GrIS topography and this impact is seasonally diverse. In winter, the variable reacting strongest to changes in the topography is the sensible heat flux (SHFLX). The reason is its dependence on surface winds, which themselves are controlled to a large extent by the shape of the GrIS. Hence, regions where a receding GrIS causes higher surface wind velocities also experience anomalous warming through SHFLX. Vice-versa, regions that become flat and ice-free are characterized by low wind speeds, low SHFLX and anomalous cold winter temperatures. In summer, we find surface warming induced by a decrease in surface albedo in deglaciated areas and regions which experience surface melting. The Eemian temperature records derived from Greenland proxies, thus, likely include a temperature signal arising from changes in the GrIS topography. For the NEEM ice core site, our model suggests that up to 3.2 °C of the annual mean Eemian warming can be attributed to these topography-related processes and hence is not necessarily linked to large-scale climate variations.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-05-11
    Description: A new, decadally resolved record of the 10Be peak at 41 kyr from the EPICA Dome C ice core (Antarctica) is used to match it with the same peak in the GRIP ice core (Greenland). This permits a direct synchronisation of the climatic variations around 41 kyr BP, independent of uncertainties related to the ice age-gas age difference in ice cores. Dansgaard-Oeschger event 10 is in the period of best synchronisation and is found to be coeval with an Antarctic temperature maximum. Simulations using a thermal bipolar seesaw model agree reasonably well with the observed relative climate chronology in these two cores. They also reproduce three Antarctic warming events between A1 and A2.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-17
    Description: Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than pre-industrial (CO2 ~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3 000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We here present transient 800 kyr simulations using the intermediate complexity model GENIE-1 which suggest that WPTs could be explained as a consequence of the meltwater-forced slowdown of the Atlantic Meridional Overturning Circulation (AMOC) during glacial terminations. It is well known that a slowed AMOC would increase southern Sea Surface Temperature (SST) through the bipolar seesaw. Observational data supports this hypothesis, suggesting that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. In order to investigate model and boundary condition uncertainty, we additionally present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 Before Present (BP). These simulations together reproduce both the timing and magnitude of WPTs, and point to the potential importance of an albedo feedback associated with West Antarctic Ice Sheet (WAIS) retreat.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-14
    Description: During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so called Dansgaard-Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the warmings recorded in Greenland were probably hemispheric in extent. Here we substantially extend and complete the North Greenland Ice Core Project (NGRIP) methane record from Termination 1 back to the end of the last interglacial period with a mean time resolution of 54 yr. We relate the amplitudes of the methane increases associated with DO events to the amplitudes of the NGRIP temperature increases derived from stable nitrogen isotope (δ15N) measurements, which have been performed along the same ice core. We find the sensitivity to oscillate between 5 parts per billion by volume (ppbv) per °C and 18 ppbv °C−1 with the approximate frequency of the precessional cycle. A remarkably high sensitivity of 25.5 ppbv °C−1 is reached during Termination 1. Analysis of the timing of the fast methane and temperature increases reveals significant lags of the methane increases relative to NGRIP temperature for the DO events 5, 9, 10, 11, 13, 15, 19, and 20. We further show that the relative interpolar concentration difference of methane is 4.6 ± 0.7% between the DO events 18 and 19 and 4.4 ± 0.8% between the DO events 19 to 20, which is in the same order as in the stadials before and after DO event 2 around the Last Glacial Maximum.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-08
    Description: A precise synchronization of different climate records is indispensable for a correct dynamical interpretation of paleoclimatic data. A chronology for the TALDICE ice core from the Ross Sea sector of East Antarctica has recently been presented based on methane synchronization with Greenland and the EDC ice cores and δ18Oice synchronization with EDC in the bottom part (TALDICE-1). By the use of new high-resolution methane data, obtained with a continuous flow analysis technique, we present a refined age scale for the age interval from 55–112 ka before present where TALDICE is synchronized with EDC. New and more precise tie points reduce the uncertainties of the age scale from up to 2000 yr in TALDICE-1 to below 1000 yr over most of the refined interval. Thus, discussions of climate dynamics at sub-millennial time scales are now possible back to 110 ka, in particular during the inception of the last ice age. Calcium data of EDC and TALDICE are compared to show the impact of the refinement to the synchronization of the two ice cores not only for the gas but also for the ice age scale.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...