ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Maps
  • Models, Biological  (3)
  • Nature. 464(7289): 788-91. doi: 10.1038/nature08854.  (1)
  • Nature. 467(7314): 484-8. doi: 10.1038/nature09395.  (1)
  • Nature. 517(7533): 196-9. doi: 10.1038/nature13825.  (1)
  • 134647
  • 328
  • Chemistry and Pharmacology  (3)
Collection
  • Articles  (3)
  • Maps
Years
Journal
Topic
  • 1
    Publication Date: 2010-04-03
    Description: Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the Arabidopsis JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel Interactor of JAZ (NINJA). NINJA acts as a transcriptional repressor whose activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress-related and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauwels, Laurens -- Barbero, Gemma Fernandez -- Geerinck, Jan -- Tilleman, Sofie -- Grunewald, Wim -- Perez, Amparo Cuellar -- Chico, Jose Manuel -- Bossche, Robin Vanden -- Sewell, Jared -- Gil, Eduardo -- Garcia-Casado, Gloria -- Witters, Erwin -- Inze, Dirk -- Long, Jeff A -- De Jaeger, Geert -- Solano, Roberto -- Goossens, Alain -- R01 GM072764/GM/NIGMS NIH HHS/ -- R01 GM072764-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 1;464(7289):788-91. doi: 10.1038/nature08854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360743" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*drug effects/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cyclopentanes/antagonists & inhibitors/*pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Models, Biological ; Oxylipins/antagonists & inhibitors/*pharmacology ; Plants, Genetically Modified ; Protein Binding ; Repressor Proteins/genetics/*metabolism ; Signal Transduction/*drug effects ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-21
    Description: Reproduction in jawed vertebrates (gnathostomes) involves either external or internal fertilization. It is commonly argued that internal fertilization can evolve from external, but not the reverse. Male copulatory claspers are present in certain placoderms, fossil jawed vertebrates retrieved as a paraphyletic segment of the gnathostome stem group in recent studies. This suggests that internal fertilization could be primitive for gnathostomes, but such a conclusion depends on demonstrating that copulation was not just a specialized feature of certain placoderm subgroups. The reproductive biology of antiarchs, consistently identified as the least crownward placoderms and thus of great interest in this context, has until now remained unknown. Here we show that certain antiarchs possessed dermal claspers in the males, while females bore paired dermal plates inferred to have facilitated copulation. These structures are not associated with pelvic fins. The clasper morphology resembles that of ptyctodonts, a more crownward placoderm group, suggesting that all placoderm claspers are homologous and that internal fertilization characterized all placoderms. This implies that external fertilization and spawning, which characterize most extant aquatic gnathostomes, must be derived from internal fertilization, even though this transformation has been thought implausible. Alternatively, the substantial morphological evidence for placoderm paraphyly must be rejected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, John A -- Mark-Kurik, Elga -- Johanson, Zerina -- Lee, Michael S Y -- Young, Gavin C -- Min, Zhu -- Ahlberg, Per E -- Newman, Michael -- Jones, Roger -- den Blaauwen, Jan -- Choo, Brian -- Trinajstic, Kate -- England -- Nature. 2015 Jan 8;517(7533):196-9. doi: 10.1038/nature13825. Epub 2014 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Biological Sciences, Flinders University, 2100, Adelaide, South Australia 5001, Australia [2] Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 9007, USA [3] Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia. ; Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia. ; Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. ; 1] South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia [2] School of Earth and Environmental Sciences, The University of Adelaide, South Australia 5005, Australia. ; Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory 0200, Australia. ; Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China. ; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18A, 752 36 Uppsala, Sweden. ; Vine Lodge, Vine Road, Johnston, Haverfordwest, Pembrokeshire SA62 3NZ, UK. ; 6 Burghley Road, Wimbledon, London SW19 5BH, UK. ; University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands. ; School of Biological Sciences, Flinders University, 2100, Adelaide, South Australia 5001, Australia. ; 1] Western Australian Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia [2] Earth and Planetary Sciences, Western Australian Museum, Perth, Western Australia 6000, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25327249" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Copulation/*physiology ; Female ; Fertilization/*physiology ; Fishes/*anatomy & histology/*physiology ; Fossils ; *Jaw ; Male ; Models, Biological ; Phylogeny ; Sex Characteristics ; Vertebrates/anatomy & histology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...