ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-03
    Description: While aboveground biomass and forest productivity can vary over abiotic gradients (e.g., temperature and moisture gradients), biotic factors such as biodiversity and tree species stand dominance can also strongly influence biomass accumulation. In this study we use a permanent plot network to assess variability in aboveground carbon (C) flux in forest tree annual aboveground biomass increment (ABI), tree aboveground net primary productivity (ANPPtree), and net soil CO2 efflux in relation to diversity of coniferous, deciduous, and a nitrogen (N)-fixing tree species (Alnus rubra). Four major findings arose: (1) overstory species richness and indices of diversity explained between one third and half of all variation in measured aboveground C flux, and diversity indices were the most robust models predicting measured aboveground C flux; (2) trends suggested decreases in annual tree biomass increment C with increasing stand dominance for four of the five most abundant tree species; (3) the presence of an N-fixing tree species (A. rubra) was not related to changes in aboveground C flux, was negatively related to soil CO2 efflux, and showed only a weak negative relationship with aboveground C pools; and (4) stands with higher overstory richness and diversity typically had higher soil CO2 efflux. Interestingly, presence of the N-fixing species was not correlated with soil inorganic N pools, and inorganic N pools were not correlated with any C flux or pool measure. We also did not detect any strong patterns between forest tree diversity and C pools, suggesting potential balancing of increased C flux both into and out of diverse forest stands. These data highlight variability in second-growth forests that may have implications for overstory community drivers of C dynamics.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-30
    Description: While aboveground biomass and forest productivity can vary over abiotic gradients (e.g., temperature and moisture gradients), biotic factors such as biodiversity and tree species stand dominance can also strongly influence biomass accumulation. In this study we use a permanent plot network to assess variability in aboveground carbon (C) flux in forest tree annual aboveground biomass increment (ABI), tree aboveground net primary productivity (ANPPtree), and net soil CO2 efflux in relation to diversity of coniferous, deciduous, and a nitrogen (N)-fixing tree species (Alnus rubra). Four major findings arose: (1) overstory species richness and indices of diversity explained between one third and half of all variation in measured aboveground C flux, and diversity indices were the most robust models predicting measured aboveground C flux; (2) trends suggested decreases in annual tree biomass increment C with increasing stand dominance for four of the five most abundant tree species; (3) the presence of an N-fixing tree species (A. rubra) was not related to changes in aboveground C flux, was negatively related to soil CO2 efflux, and showed only a weak negative relationship with aboveground C pools; and (4) stands with higher overstory richness and diversity typically had higher soil CO2 efflux. Interestingly, presence of the N-fixing species was not correlated with soil inorganic N pools, and inorganic N pools were not correlated with any C flux or pool measure. We also did not detect any strong patterns between forest tree diversity and C pools, suggesting potential balancing of increased C flux both into and out of diverse forest stands. These data highlight variability in second-growth forests that may have implications for overstory community drivers of C dynamics.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-12-29
    Electronic ISSN: 1424-2818
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-12
    Description: The spatially autocorrelated patterns of biodiversity can be an important determinant of ecological processes, functions and delivery of services across spatial scales. Therefore, understanding disturbance effects on spatial autocorrelation in biodiversity is crucial for conservation and restoration planning but remains unclear. In a survey of disturbance versus spatial patterns of biodiversity literature from forests, grasslands and savannah ecosystems, we found that habitat disturbances generally reduce the spatial autocorrelation in species diversity on average by 15.5% and reduce its range (the distance up to which autocorrelation prevails) by 21.4%, in part, due to disturbance-driven changes in environmental conditions, dispersal, species interactions, or a combination of these processes. The observed effect of disturbance, however, varied markedly among the scale of disturbance (patch-scale versus habitat-scale). Surprisingly, few studies have examined disturbance effects on the spatial patterns of functional diversity, and the overall effect was non-significant. Despite major knowledge gaps in certain areas, our analysis offers a much-needed initial insights into the disturbance-driven changes in the spatial patterns of biodiversity, thereby setting the ground for informed discussion on conservation and promotion of spatial heterogeneity in managing natural systems under a changing world.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...