ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (31)
  • MDPI  (31)
  • American Chemical Society
  • American Society of Hematology
  • Cell Press
  • Springer
  • 2015-2019  (31)
  • 1980-1984
  • 2019  (31)
  • Diversity  (21)
  • Symmetry  (10)
  • 125038
  • 125093
Collection
  • Articles  (31)
Publisher
Years
  • 2015-2019  (31)
  • 1980-1984
Year
Topic
  • 1
    Publication Date: 2019
    Description: The great shearwater (Ardenna gravis) is a common pelagic bird with a distribution that spans almost the entire Atlantic basin, which in conjunction with its relatively high abundance, makes great shearwaters an effective bio indicator. We compared δ13C and δ15N values from the feathers, red blood cells (RBCs), and plasma of great shearwaters collected in 2014 and 2015 from the waters off Massachusetts and Cape Cod. The δ13C and δ15N values of RBCs were quite constant between sampling periods and years, suggesting a generally stable food web over that time period. However, the δ13C of plasma indicates a small seasonal change in diet between July and September for both years, with plasma δ15N values suggesting a slight increase in trophic level late in summer. Comparison of the δ15N of RBCs and plasma indicates that great shearwaters experienced a diet shift during the first few weeks of summer 2014, but not in 2015. Comparisons with other studies suggest that these shearwaters feed at a lower trophic level than great shearwaters sampled in the Bay of Fundy and that there is a decrease in δ13C with increasing latitude, which could indicate a more pelagic diet in northern waters. Stable isotope analysis of the sixth primary feathers provided evidence that these feathers are molted in the Northern Hemisphere and that the diet of great shearwaters shortly after arrival was different in 2014 and 2015. This study demonstrates that within species comparisons of tissue isotopic signatures over time and comparisons of isotopic signatures of tissues with different turnover rates, can detect changes in diet and be used as a tool to monitor for changes in marine food webs over time and space. The relevant signals remain informative even in the absence of species-specific data on tissue-diet discrimination factors, tissue turnover rates, or knowledge of dietary components and their stable isotopic signatures, suggesting dietary changes indicative of a corresponding change in the food web.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: The evolution of multipurpose sensors over the last decades has been investigated with the aim of developing innovative devices with applications in several fields of technology, including in the food industry. The integration of such sensors in food packaging technology has paved the way for intelligent food packaging. These integrated systems are capable of providing reliable information about the quality of the packed products during their storage period. To accomplish this goal, intelligent packs use a variety of sensors suited for monitoring the quality and safety of food products by recording the evolution of parameters like the quantity of pathogen agents, gases, temperature, humidity and storage period. This technology, when combined with IoT, is able to provide a lot more information than conventional food inspection technologies, which are limited to weight, volume, color and aspect inspection. The original system described in this work relies on a simple but effective method of integrated food monitoring, right at the client home, suitable for user prepared vacuum-packed foods. It builds upon the IoT concept and is able to create a network of interconnected devices. By using this approach, we are able to combine actuators and sensing devices also providing a common operating picture (COP) by sharing information over the platforms. More precisely, our system consists of gas, temperature and humidity sensors, which provide the essential information needed for evaluating the quality of the packed product. This information is transmitted wirelessly to a computer system providing an interface where the user can observe the evolution of the product quality over time.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Floral symmetry is widely known as one of the most important structural traits of reproductive organs in angiosperms. It is tightly related to the shape and arrangement of floral parts, and at the same time, it plays a key role in general appearance (visual gestalt) of a flower, which is especially important for the interactions of zoophilous flowers with their pollinators. The traditional classification of floral symmetry divides nearly all the diversity of angiosperm flowers into actinomorphic and zygomorphic ones. Within this system, which is useful for ecological studies, many variations of symmetry appear to be disregarded. At the same time, the diversity of floral symmetry is underpinned not only by ecological factors, but also by morphogenetic mechanisms and constraints. Sometimes it is not an easy task to uncover the adaptive or developmental significance of a change of the floral symmetry in a particular lineage. Using the asterid order Apiales as a model group, we demonstrate that such changes can correlate with the merism of the entire flower or of its particular whorl, with the relative orientation of gynoecium to the rest of the flower, with the presence of sterile floral elements and other morphological characters. Besides, in some taxa, the shape and symmetry of the flower change in the course of its development, which should be taken in consideration in morphological comparisons and evaluations of synapomorphies in a particular clade. Finally, we show that different results can be obtained due to employment of different approaches: for instance, many flowers that are traditionally described as actinomorphic turn out to be disymmetric, monosymmetric, or asymmetric from a more detailed look. The traditional method of division into actinomorphy and zygomorphy deals with the general appearance of a flower, and mainly considers the shape of the corolla, while the geometrical approach handles the entire three-dimensional structure of the flower, and provides an exact number of its symmetry planes.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: The ecology of complex microhabitats remains poorly characterized in most tropical and subtropical biomes, and holds potential to help understand the structure and dynamics of different biodiversity components in these ecosystems. We assessed nutritional and metabolic parameters of two bromeliad species (Aechmea gamosepala and Vriesea platynema) at an Atlantic Forest site and used 16S rDNA metabarcoding to survey the microbial communities inhabiting their tanks. We observed that levels of some nutrients (e.g., nitrogen) varied across seasons consistently in both species, while others (e.g., phenolic compounds) presented considerable differences between the two bromeliads. In contrast, patterns of tank microbial diversity did not follow a similar temporal trend. There was extensive variation in microbial composition among samples, which included intra-specific differences but also some consistent differences between the two bromeliads. For example, Citrobacter, Klebsiella and Pantoea presented significantly different abundances in the two species. Interestingly, the dominant bacterial genera in both species included Pseudomonas and Enterobacter, which have been reported to include plant-beneficial species. Overall, our data contribute to the characterization of the nutritional status of Atlantic Forest bromeliads and the composition of their prokaryotic communities, laying the foundation for detailed investigations targeting the ecological interactions between these plants and their associated microbes.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The vertebrate toll-like receptor (TLRs) supergene family is a first-line immune defense against viral and non-viral pathogens. Here, comparative evolutionary-genomics of 79 vertebrate species (8 mammals, 48 birds, 11 reptiles, 1 amphibian, and 11 fishes) revealed differential gain/loss of 26 TLRs, including 6 (TLR3, TLR7, TLR8, TLR14, TLR21, and TLR22) that originated early in vertebrate evolution before the diversification of Agnatha and Gnathostomata. Subsequent dynamic gene gain/loss led to lineage-specific diversification with TLR repertoires ranging from 8 subfamilies in birds to 20 in fishes. Lineage-specific loss of TLR8-9 and TLR13 in birds and gains of TLR6 and TLR10-12 in mammals and TLR19-20 and TLR23-27 in fishes. Among avian species, 5–10% of the sites were under positive selection (PS) (omega 1.5–2.5) with radical amino-acid changes likely affecting TLR structure/functionality. In non-viral TLR4 the 20 PS sites (posterior probability PP 〉 0.99) likely increased ability to cope with diversified ligands (e.g., lipopolysaccharide and lipoteichoic). For viral TLR7, 23 PS sites (PP 〉 0.99) possibly improved recognition of highly variable viral ssRNAs. Rapid evolution of the TLR supergene family reflects the host–pathogen arms race and the coevolution of ligands/receptors, which follows the premise that birds have been important vectors of zoonotic pathogens and reservoirs for viruses.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: I fused observed spectra from the white-dwarf star G191-B2B to constrain the spatial and temporal variation of the fine-structure constant, α = e 2 4 π ε 0 ℏ c . The analysis was combined with laboratory-measured and astronomically observed lines in [Ni V] to find Δ α / α = ( − 0.003 ± 0.072 ) × 10 − 6 . The obtained result allows a symmetry of the related comparison with previous studies looking for cosmological variations of α using spectra from Quasi Stellar Objects (QSOs). In this way, we can expect higher sensitivity from white-dwarf spectra than QSO spectra. Therefore, this study should have orders-of-magnitude higher sensitivity per system than previous quasar studies, and we should reduce statistical and systematic errors. The results of this study place a more stringent limit on Δ α / α than previous studies using the same data.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: The electronic structure of the GdNiGe ternary intermetallic compound was investigated in this work. We carried out the spin-polarized DFT+U calculations of its band structure within generalized gradient approximation accounting for strong electronic correlations in the 4f-shell of gadolinium ions. The antiferromagnetic ordering was reproduced in the calculations, in agreement with experimental data. The calculated equilibrium volume is within 2% accuracy to the experimental crystal structure data, which demonstrates the reliability of the method chosen. The 4f-shell of Gd was demonstrated to substantially contribute to the spectral and magnetic properties of the GdNiGe compounds, whereas other ions were found nonmagnetic, in agreement with experimental data.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Coastal dunes arise from feedbacks between vegetation and sediment supply. Species-specific differences in plant functional morphology affect sand capture and dune shape. In this study, we build on research showing a relationship between dune grass species and dune geomorphology on the US central Atlantic Coast. This study seeks to determine the ways in which four co-occurring dune grass species (Ammophila breviligulata, Panicum amarum, Spartina patens, Uniola paniculata) differ in their functional morphology and sand accretion. We surveyed the biogeography, functional morphology, and associated change in sand elevation of the four dune grass species along a 320-kilometer distance across the Outer Banks. We found that A. breviligulata had dense and clumped shoots, which correlated with the greatest sand accretion. Coupled with fast lateral spread, it tends to build tall and wide foredunes. Uniola paniculata had fewer but taller shoots and was associated with ~42% lower sand accretion. Coupled with slow lateral spread, it tends to build steeper and narrower dunes. Panicum amarum had similar shoot densities and associated sand accretion to U. paniculata despite its shorter shoots, suggesting that shoot density is more important than morphology. Finally, we hypothesize, given the distributions of the grass species, that foredunes may be taller and wider and have better coastal protection properties in the north where A. breviligulata is dominant. If under a warming climate A. breviligulata experiences a range shift to the north, as appears to be occurring with U. paniculata, changes in grass dominance and foredune morphology could make for more vulnerable coastlines.
    Electronic ISSN: 1424-2818
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: In this paper, we propose a controller for a bicycle using the DDPG (Deep Deterministic Policy Gradient) algorithm, which is a state-of-the-art deep reinforcement learning algorithm. We use a reward function and a deep neural network to build the controller. By using the proposed controller, a bicycle can not only be stably balanced but also travel to any specified location. We confirm that the controller with DDPG shows better performance than the other baselines such as Normalized Advantage Function (NAF) and Proximal Policy Optimization (PPO). For the performance evaluation, we implemented the proposed algorithm in various settings such as fixed and random speed, start location, and destination location.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: The geometry-based HOMA (Harmonic Oscillator Model of Aromaticity) descriptor, based on the reference compounds of different delocalizations of n- and π-electrons, can be applied to molecules possessing analogous bonds, e.g., only CC, only CN, only CO, etc. For compounds with different heteroatoms and a different number of CC, CX, XX, and XY bonds, its application leads to some discrepancies. For this reason, the structural descriptor was modified and the HOMED (Harmonic Oscillator Model of Electron Delocalization) index defined. In 2010, the HOMED index was parameterized for compounds with C, N and O atoms. For parametrization, the reference molecules of similar delocalizations of n- and π-electrons were employed. In this paper, the HOMED index was extended to compounds containing the CP, CS, NN, NP, PP, NO, NS, PO, and PS bonds. For geometrical optimization of all reference molecules and of all investigated heterocompounds, the same quantum–chemical method {B3LYP/6-311+G(d,p)} was used to eliminate errors of the HOMED estimation. For some tautomeric systems, the Gn methods were also employed to confirm tautomeric preferences. The extended HOMED index was applied to five-membered heterocycles, simple furan and thiophene, and their N and P derivatives as well as for tautomeric pyrrole and phosphole and their N and P derivatives. The effects of additional heteroatom(s) in the ring on the HOMED values for furan are parallel to those for thiophene. For pyrroles, aromaticity dictates the tautomeric preferences. An additional N atom in the ring only slightly affects the HOMED values for the favored and well delocalized NH tautomers. Significant changes take place for their rare CH forms. When intramolecular proton-transfer is considered for phosphole and its P derivatives, the PH tautomers seem to be favored only for 1,2,3-triphosphole/1,2,5-triphosphole and for 1,2,3,5-tetraphosphole. For other phospholes, the CH forms have smaller Gibbs energies than the PH isomers. For phosphazoles, the labile proton in the favored form is linked to the N atom. The PH forms have smaller HOMED indices than the NH tautomers but higher than the CH ones.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...