ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Molecular Diversity Preservation International  (2)
  • American Physical Society
  • 2015-2019  (2)
  • 1985-1989
  • Remote Sensing. 2019; 11(22): 2621. Published 2019 Nov 08. doi: 10.3390/rs11222621.  (1)
  • Remote Sensing. 2019; 11(9): 1083. Published 2019 May 07. doi: 10.3390/rs11091083.  (1)
  • 124526
Collection
  • Articles  (2)
Publisher
  • Molecular Diversity Preservation International  (2)
  • American Physical Society
  • MDPI  (2)
Years
Year
Journal
  • 1
    Publication Date: 2019-11-08
    Description: Increasing demand for land resources at the coast has exerted immense pressure on vulnerable environments. Population and economic growth in coastal cities have combined to produce a scarcity of suitable space for development, the response to which has frequently been the reclamation of land from the sea, most prominently in China. Urbanization is a key driver of such changes and a detailed investigation of coastal land reclamation at the city scale is required. This study analyzed remote sensing imagery for the period 1990 to 2018 to explore the trajectories of coastal land reclamation in nine major urban agglomerations across the three largest deltas in China using the JRC Global Surface Water (Yearly Water Classification History, v1.1) (GSW) dataset on the Google Earth Engine platform. The results are considered in the context of major national policy reforms over the last three decades. The analysis reveals that total land reclaimed among nine selected cities had exceeded 2800 km2 since 1984, 82% of which occurred after 2000, a year following the enactment of China’s agricultural ‘red line’ policy. Shanghai exhibited the greatest overall area of land extension, followed by Ningbo and Tianjin, especially in the period following the privatization of property rights in 2004. In analyzing annual trends, we identified the developmental stages of a typical coastal reclamation project and how these vary between cities. Scrutiny of the results revealed voids in nighttime light satellite data (2014–2018) in some localities. Although these voids appeared to be characterized by construction, they were occupied by vacant buildings, and were therefore examples of so-called “ghost cities.” In China, as elsewhere, continual land reclamation needs to be considered in relation to, inter alia, sea level rise and land subsidence that pose significant challenges to the vision of sustainable urban development in these three deltaic megacities.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-07
    Description: In yield analysis and plant design of concentrated solar power (CSP) tower plants, increased uncertainties are caused by the mostly unknown solar attenuation between the concentrating heliostat field and the receiver on top of the tower. This attenuation is caused mainly by aerosol particles and water vapor. Various on-site measurement methods of atmospheric extinction in solar tower plants have been developed during recent years, but during resource assessment for distinct tower plant projects in-situ measurement data sets are typically not available. To overcome this lack of information, a transmittance model (TM) has been previously developed and enhanced by the authors to derive the atmospheric transmittance between a heliostat and receiver on the basis of common direct normal irradiance (DNI), temperature, relative humidity and barometric pressure measurements. Previously the model was only tested at one site. In this manuscript, the enhanced TM is validated for three sites (CIEMAT’s Plataforma Solar de Almería (PSA), Spain, Missour, Morocco (MIS) and Zagora, Morocco (ZAG)). As the strongest assumption in the TM is the vertical aerosol particle profile, three different approaches to describe the vertical profile are tested in the TM. One approach assumes a homogeneous aerosol profile up to 1 kilometer above ground, the second approach is based on LIVAS profiles obtained from Lidar measurements and the third approach uses boundary layer height (BLH) data of the European Centre for Medium-Range Weather Forecasts (ECMWF). The derived broadband transmittance for a slant range of 1 km ( T 1 k m ) time series is compared with a reference data set of on-site absorption- and broadband corrected T 1 k m derived from meteorological optical range (MOR) measurements for the temporal period between January 2015 and November 2017. The absolute mean bias error (MBE) for the TM’s T 1 k m using the three different aerosol profiles lies below 5% except for ZAG and one profile assumption. The MBE is close to 0 for PSA and MIS assuming a homogeneous extinction coefficient up to 1 km above ground. The root mean square error (RMSE) is around 5–6% for PSA and ZAG and around 7–8% for MIS. The TM performs better during summer months, during which more data points have been evaluated. This validation proves the applicability of the transmittance model for resource assessment at various sites. It enables the identification of a clear site with high T 1 k m with a high accuracy and provides an estimation of the T 1 k m for hazy sites. Thus it facilitates the decision if on-site extinction measurements are necessary. The model can be used to improve the accuracy of yield analysis of tower plants and allows the site adapted design.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...