ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (19)
  • Other Sources
  • Molecular Diversity Preservation International  (19)
  • AGU (American Geophysical Union)
  • Elsevier
  • Hindawi
  • Springer
  • 2020-2024
  • 2015-2019  (19)
  • 1990-1994
  • 1965-1969
  • 1960-1964
  • 2021
  • 2019  (19)
  • Remote Sensing. 2019; 11(1): 87. Published 2019 Jan 06. doi: 10.3390/rs11010087.  (1)
  • Remote Sensing. 2019; 11(10): 1147. Published 2019 May 14. doi: 10.3390/rs11101147.  (1)
  • Remote Sensing. 2019; 11(11): 1302. Published 2019 May 31. doi: 10.3390/rs11111302.  (1)
  • Remote Sensing. 2019; 11(12): 1411. Published 2019 Jun 14. doi: 10.3390/rs11121411.  (1)
  • Remote Sensing. 2019; 11(12): 1427. Published 2019 Jun 15. doi: 10.3390/rs11121427.  (1)
  • Remote Sensing. 2019; 11(12): 1469. Published 2019 Jun 21. doi: 10.3390/rs11121469.  (1)
  • Remote Sensing. 2019; 11(13): 1554. Published 2019 Jun 29. doi: 10.3390/rs11131554.  (1)
  • Remote Sensing. 2019; 11(16): 1894. Published 2019 Aug 13. doi: 10.3390/rs11161894.  (1)
  • 124526
  • Architecture, Civil Engineering, Surveying  (19)
  • Political Science
  • Physics
  • Biology
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Articles  (19)
  • Other Sources
Publisher
  • Molecular Diversity Preservation International  (19)
  • AGU (American Geophysical Union)
  • Elsevier
  • Hindawi
  • Springer
  • +
Years
  • 2020-2024
  • 2015-2019  (19)
  • 1990-1994
  • 1965-1969
  • 1960-1964
  • +
Year
Journal
Topic
  • Architecture, Civil Engineering, Surveying  (19)
  • Political Science
  • Physics
  • Biology
  • Electrical Engineering, Measurement and Control Technology
  • +
  • 1
    Publication Date: 2019-12-07
    Description: Non-destructive techniques are widely used to explore and detect burial remains in archaeological sites. In this study, we present two sets of sensors, aerial and geophysics, that we have combined to analyze a 2 ha sector of ground in the Torreparedones Archaeological Park located in Cordoba, Spain. Aerial platforms were used in a first step to identify a Roman amphitheater located near the Roman city. To ensure greater reliability and to rule out geological causes, a geophysical survey was subsequently carried out. Magnetic gradiometer, electrical resistivity tomography (ERT), and ground-penetrating radar (GPR) methods were also used to confirm the existence of this structure, define the geometry and, to the greatest possible extent, determine the degree of preservation of this construction. The adverse conditions for data acquisition was one of the main constraints, since the area of interest was an almond plantation which conditioned geophysical profiles. In addition, due to the low dielectric and magnetic contrast between the structures and the embedding material, meticulous data processing was required. In order to obtain further evidence of this amphitheater and to corroborate the aerial images and the geophysical models, an archaeological excavation was carried out. The results confirmed the cross-validation with the predicted non-destructive models. Therefore, this work can serve as an example to be used prior to conservation actions to investigate the suburbs and landscapes near similar roman cities in Spain.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-31
    Description: This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-01
    Description: In olive groves, vegetation ground cover (VGC) plays an important ecological role. The EU Common Agricultural Policy, through cross-compliance, acknowledges the importance of this factor, but, to determine the real impact of VGC, it must first be quantified. Accordingly, in the present study, eleven vegetation indices (VIs) were applied to quantify the density of VGC in olive groves (Olea europaea L.), according to high spatial resolution (10–12 cm) multispectral images obtained by an unmanned aerial vehicle (UAV). The fieldwork was conducted in early spring, in a Mediterranean mountain olive grove in southern Spain presenting various VGC densities. A five-step method was applied: (1) generate image mosaics using UAV technology; (2) apply the VIs; (3) quantify VGC density by means of sampling plots (ground-truth); (4) calculate the mean reflectance of the spectral bands and of the VIs in each sampling plot; and (5) quantify VGC density according to the VIs. The most sensitive index was IRVI, which accounted for 82% (p 〈 0.001) of the variability of VGC density. The capability of the VIs to differentiate VGC densities increased in line with the cover interval range. RVI most accurately distinguished VGC densities 〉 80% in a cover interval range of 10% (p 〈 0.001), while IRVI was most accurate for VGC densities 〈 30% in a cover interval range of 15% (p 〈 0.01). IRVI, NRVI, NDVI, GNDVI and SAVI differentiated the complete series of VGC densities when the cover interval range was 30% (p 〈 0.001 and p 〈 0.05).
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-31
    Description: Sun-Induced fluorescence at 760 nm (F760) is increasingly being used to predict gross primary production (GPP) through light use efficiency (LUE) modeling, even though the mechanistic processes that link the two are not well understood. We analyzed the effect of nitrogen (N) and phosphorous (P) availability on the processes that link GPP and F760 in a Mediterranean grassland manipulated with nutrient addition. To do so, we used a combination of process-based modeling with Soil-Canopy Observation of Photosynthesis and Energy (SCOPE), and statistical analyses such as path modeling. With this study, we uncover the mechanisms that link the fertilization-driven changes in canopy nitrogen concentration (N%) to the observed changes in F760 and GPP. N addition changed plant community structure and increased canopy chlorophyll content, which jointly led to changes in photosynthetic active radiation (APAR), ultimately affecting both GPP and F760. Changes in the abundance of graminoids, (%graminoids) driven by N addition led to changes in structural properties of the canopy such as leaf angle distribution, that ultimately influenced observed F760 by controlling the escape probability of F760 (Fesc). In particular, we found a change in GPP–F760 relationship between the first and the second year of the experiment that was largely driven by the effect of plant type composition on Fesc, whose best predictor is %graminoids. The P addition led to a statistically significant increase on light use efficiency of fluorescence emission (LUEf), in particular in plots also with N addition, consistent with leaf level studies. The N addition induced changes in the biophysical properties of the canopy that led to a trade-off between surface temperature (Ts), which decreased, and F760 at leaf scale (F760leaf,fw), which increased. We found that Ts is an important predictor of the light use efficiency of photosynthesis, indicating the importance of Ts in LUE modeling approaches to predict GPP.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-23
    Description: The HyPlant imaging spectrometer is a high-performance airborne instrument consisting of two sensor modules. The DUAL module records hyperspectral data in the spectral range from 400–2500 nm, which is useful to derive biochemical and structural plant properties. In parallel, the FLUO module acquires data in the red and near infrared range (670–780 nm), with a distinctly higher spectral sampling interval and finer spectral resolution. The technical specifications of HyPlant FLUO allow for the retrieval of sun-induced chlorophyll fluorescence (SIF), a small signal emitted by plants, which is directly linked to their photosynthetic efficiency. The combined use of both HyPlant modules opens up new opportunities in plant science. The processing of HyPlant image data, however, is a rather complex procedure, and, especially for the FLUO module, a precise characterization and calibration of the sensor is of utmost importance. The presented study gives an overview of this unique high-performance imaging spectrometer, introduces an automatized processing chain, and gives an overview of the different processing steps that must be executed to generate the final products, namely top of canopy (TOC) radiance, TOC reflectance, reflectance indices and SIF maps.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-18
    Description: Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneity. Such exercise can be achieved with coupled leaf and canopy radiative transfer models (RTMs), whereby input variables can virtually simulate any vegetation scenario. With the intention of evaluating multiple VIs in an efficient way, this led us to the development of a global sensitivity analysis (GSA) toolbox dedicated to the analysis of VIs on their sensitivity towards RTM input variables. We identified VIs that are designed to be sensitive towards leaf chlorophyll content (LCC), leaf water content (LWC) and leaf area index (LAI) for common sensors of terrestrial Earth observation satellites: Landsat 8, MODIS, Sentinel-2, Sentinel-3 and the upcoming imaging spectrometer mission EnMAP. The coupled RTMs PROSAIL and PROINFORM were used for simulations of homogeneous and forest canopies respectively. GSA total sensitivity results suggest that LCC-sensitive indices respond most robust: for the great majority of scenarios, chlorophyll a + b content (Cab) drives between 75% and 82% of the indices’ variability. LWC-sensitive indices were most affected by confounding variables such as Cab and LAI, although the equivalent water thickness (Cw) can drive between 25% and 50% of the indices’ variability. Conversely, the majority of LAI-sensitive indices are not only sensitive to LAI but rather to a mixture of structural and biochemical variables.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-12
    Description: The 3D digital characterization of vegetation is a growing practice in the agronomy sector. Precision agriculture is sustained, among other methods, by variables that remote sensing techniques can digitize. At present, laser scanners make it possible to digitize three-dimensional crop geometry in the form of point clouds. In this work, we developed several methods for calculating the volume of vine wood, with the final intention of using these values as indicators of vegetative vigor on a thematic map. For this, we used a static terrestrial laser scanner (TLS), a mobile scanning system (MMS), and six algorithms that were implemented and adapted to the data captured and to the proposed objective. The results show that, with TLS equipment and the algorithm called convex hull cluster, the volumes of a vine trunk can be obtained with a relative error lower than 7%. Although the accuracy and detail of the cloud obtained with TLS are very high, the cost per unit for the scanned area limits the application of this system for large areas. In contrast to the inoperability of the TLS in large areas of terrain, the MMS and the algorithm based on the L1-medial skeleton and the modelling of cylinders of a certain height and diameter have solved the estimation of volumes with a relative error better than 3%. To conclude, the vigor map elaborated represents the estimated volume of each vine by this method.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-05-31
    Description: Volcanic ash is a well-known hazard to population, infrastructure, and commercial and civil aviation. Early assessment of the parameters that control the development and evolution of volcanic plumes is crucial to effective risk mitigation. Acoustic infrasound is a ground-based remote sensing technique—increasingly popular in the past two decades—that allows rapid estimates of eruption source parameters, including fluid flow velocities and volume flow rates of erupted material. The rate at which material is ejected from volcanic vents during eruptions, is one of the main inputs into models of atmospheric ash transport used to dispatch aviation warnings during eruptive crises. During explosive activity at volcanoes, the injection of hot gas-laden pyroclasts into the atmosphere generates acoustic waves that are recorded at local, regional and global scale. Within the framework of linear acoustic theory, infrasound sources can be modelled as multipole series, and acoustic pressure waveforms can be inverted to obtain the time history of volume flow at the vent. Here, we review near-field (
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-15
    Description: Understanding and monitoring the dynamics of rangeland heterogeneity through time and across space is critical for the effective management and conservation of rangeland systems and the sustained supply of the ecosystem goods and services they provide. Conventional approaches (both field-based and remote sensing) to monitoring rangeland productivity fail to effectively capture important aspects of this heterogeneity. While field methods can effectively capture high levels of detail at fine spatial and temporal resolutions, they are limited in their applicability and scalability to larger spatial extents and longer time periods. Alternatively, remote sensing based approaches that scale broad spatiotemporal extents simplify important heterogeneity occurring at fine scales. We address these limitations to monitoring rangeland productivity by combining a continuous plant functional type (PFT) fractional cover dataset with a Landsat derived gross primary production (GPP) and net primary production (NPP) model. Integrating the annual PFT dataset with a 16-day Landsat normalized difference vegetation (NDVI) composite dataset enabled us to disaggregate the pixel level NDVI values to the sub-pixel PFTs. These values were incorporated into the productivity algorithm, enabling refined estimations of 16-day GPP and annual NPP for the PFTs that composed each pixel. We demonstrated the results of these methods on a set of representative rangeland sites across the western United States. Partitioning rangeland productivity to sub-pixel PFTs revealed new dynamics and insights to aid the sustainable management of rangelands.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-14
    Description: Accurate classification of tropical tree species is critical for understanding forest habitat, biodiversity, forest composition, biomass, and the role of trees in climate variability through carbon uptake. The aim of this study is to establish an accurate classification procedure for tropical tree species, specifically testing the feasibility of WorldView-3 (WV-3) multispectral imagery for this task. The specific study site is a defined arboretum within a well-known tropical forest research location in Costa Rica (La Selva Biological Station). An object-based classification is the basis for the analysis to classify six selected tree species. A combination of pre-processed WV-3 bands were inputs to the classification, and an edge segmentation process defined multi-pixel-scale tree canopies. WorldView-3 bands in the Green, Red, Red Edge, and Near-Infrared 2, particularly when incorporated in two specialized vegetation indices, provide high discrimination among the selected species. Classification results yield an accuracy of 85.37%, with minimal errors of commission (7.89%) and omission (14.63%). Shadowing in the satellite imagery had a significant effect on segmentation accuracy (identifying single-species canopy tops) and on classification. The methodology presented provides a path to better characterization of tropical forest species distribution and overall composition for improving biomass studies in a tropical environment.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...