ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Materials  (1)
  • 115624
Collection
  • Articles  (1)
Publisher
Years
Journal
  • 1
    Publication Date: 2018-06-27
    Description: Materials, Vol. 11, Pages 1088: Combined Effects of Texture and Grain Size Distribution on the Tensile Behavior of α-Titanium Materials doi: 10.3390/ma11071088 Authors: Thiebaud Richeton Francis Wagner Cai Chen Laszlo S. Toth This work analyzes the role of both the grain size distribution and the crystallographic texture on the tensile behavior of commercially pure titanium. Specimens with different microstructures, especially with several mean grain sizes, were specifically prepared for that purpose. It is observed that the yield stress depends on the grain size following a Hall–Petch relationship, that the stress–strain curves have a tendency to form a plateau that becomes more and more pronounced with decreasing mean grain size and that the hardening capacity increases with the grain size. All these observations are well reproduced by an elasto-visco-plastic self-consistent model that incorporates grain size effects within a crystal plasticity framework where dislocations’ densities are the state variables. First, the critical resolved shear stresses are made dependent on the individual grain size through the addition of a Hall–Petch type term. Then, the main originality of the model comes from the fact that the multiplication of mobile dislocation densities is also made grain size dependent. The underlying assumption is that grain boundaries act mainly as barriers or sinks for dislocations. Hence, the smaller the grain size, the smaller the expansion of dislocation loops and thus the smaller the increase rate of mobile dislocation density is. As a consequence of this hypothesis, both mobile and forest dislocation densities increase with the grain size and provide an explanation for the grain size dependence of the transient low work hardening rate and hardening capacity.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...