ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Molecular Diversity Preservation International  (2)
  • Institute of Physics
  • Oxford University Press
  • 2020-2022  (2)
  • Materials. 2020; 13(10): 2235. Published 2020 May 13. doi: 10.3390/ma13102235.  (1)
  • Materials. 2020; 13(20): 4532. Published 2020 Oct 13. doi: 10.3390/ma13204532.  (1)
  • 115624
Collection
  • Articles  (2)
Publisher
  • Molecular Diversity Preservation International  (2)
  • Institute of Physics
  • Oxford University Press
Years
  • 2020-2022  (2)
Year
Journal
  • 1
    Publication Date: 2020-05-13
    Description: The reactivity of particle surfaces can be used as a criterion to group nanoforms (NFs) based on similar potential hazard. Since NFs may partially or completely dissolve over the duration of the assays, with the ions themselves inducing a response, reactivity assays commonly measure the additive reactivity of the particles and ions combined. Here, we determine the concentration of ions released over the course of particle testing, and determine the relative contributions of the released ions to the total reactivity measured. We differentiate three classes of reactivity, defined as being A) dominated by particles, B) additive of particles and ions, or C) dominated by ions. We provide examples for each class by analyzing the NF reactivity of Fe2O3, ZnO, CuO, Ag using the ferric reduction ability of serum (FRAS) assay. Furthermore, another two reactivity tests were performed: Dichlorodihydrofluorescin diacetate (DCFH2‑DA) assay and electron paramagnetic resonance (EPR) spectroscopy. We compare assays and demonstrate that the dose‑response may be almost entirely assigned to ions in one assay (CuO in DCFH2‑DA), but to particles in others (CuO in EPR and FRAS). When considering this data, we conclude that one cannot specify the contribution of ions to NF toxicity for a certain NF, but only for a certain NF in a specific assay, medium and dose. The extent of dissolution depends on the buffer used, particle concentration applied, and duration of exposure. This culminates in the DCFH2‑DA, EPR, FRAS assays being performed under different ion‑to‑particle ratios, and differing in their sensitivity towards reactions induced by either ions or particles. If applied for grouping, read‑across, or other concepts based on the similarity of partially soluble NFs, results on reactivity should only be compared if measured by the same assay, incubation time, and dose range.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-13
    Description: The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...