ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Copernicus  (4)
  • Earth System Science Data Discussions. 2016; 1-35. Published 2016 Dec 06. doi: 10.5194/essd-2016-55. [early online release]  (1)
  • Earth System Science Data Discussions. 2017; 1-23. Published 2017 Sep 21. doi: 10.5194/essd-2017-86. [early online release]  (1)
  • Earth System Science Data Discussions. 2019; 1-26. Published 2019 Apr 15. doi: 10.5194/essd-2019-42. [early online release]  (1)
  • Earth System Science Data Discussions. 2019; 1-37. Published 2019 Feb 25. doi: 10.5194/essd-2019-21. [early online release]  (1)
  • 110214
Collection
  • Articles  (4)
Publisher
  • Copernicus  (4)
Years
Journal
Topic
  • 1
    Publication Date: 2017-09-21
    Description: Accurate and long-term rainfall estimates are the main inputs for several applications, spanning from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998–2015), with a spatial sampling of 0.25° on a global scale and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets. The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two stateof-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modelled data set (ERA-Interim). The assessment is carried out on a global scale at 1° of spatial sampling and 5-day of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value 〉 0.56), Root Mean Square Difference (RMSD, median value
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-06
    Description: The dataset presented here consists of an ensemble of ten global hydrological and land surface models for the period 1979–2012 using a reanalysis-based meteorological forcing dataset (0.5° resolution). The current dataset serves as a state-of-the-art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i) snow-dominate regions and (ii) tropical rainforest and monsoon areas. The large uncertainty of precipitation in the tropics is not being reflected in the ensemble runoff. Verification of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB) showed overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results also show that there is currently no single best model for all variables and that model performance is spatially variable. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3/yr (334 kg/m2/yr) while the ensemble mean of total evaporation was 537 kg/m2/yr. All data are made available openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu), and via a direct http and ftp download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and WMS. The doi for the data is: doi:10.5281/zenodo.167070
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-15
    Description: Since the late 1970s, spaceborne microwave sensors have been providing measurements of radiation emitted by the Earth's surface. From these measurements it is possible to derive vegetation optical depth (VOD), a model-based indicator related to vegetation density and its relative water content. Because of its high temporal resolution and long availability, VOD can be used to monitor short- to long-term changes in vegetation. However, studying long-term VOD dynamics is generally hampered by the relatively short time span covered by the individual microwave sensors. This can potentially be overcome by merging multiple VOD products into a single climate data record. But, combining multiple sensors into a single product is challenging as systematic differences between input products, e.g. biases, different temporal and spatial resolutions and coverage, need to be overcome. Here, we present a new series of long-term VOD products, which combine multiple VOD data sets derived from several sensors (SSM/I, TMI, AMSR-E, Windsat, and AMSR-2) using the Land Parameter Retrieval Model. We produce separate VOD products for microwave observations in different spectral bands, namely Ku-band (period 1987–2017), X-band (1997–2018), and C-band (2002–2018). In this way, our multi-band VOD products preserve the unique characteristics of each frequency with respect to the structural elements of the canopy. Our approach to merge the single-sensor VOD products is similar to the one of the ESA CCI Soil Moisture products (Liu et al., 2012; Dorigo et al., 2017): First, the data sets are co-calibrated via cumulative distribution function matching using AMSR-E as scaling reference. We apply a new matching technique that scales outliers more robustly than ordinary piece-wise linear interpolation. Second, we aggregate the data sets by taking the arithmetic mean between temporally overlapping observations of the scaled data, generating a VOD Climate Archive (VODCA). The characteristics of VODCA are assessed for self-consistency and against other products: spatio-temporal patterns and anomalies of the merged products show consistency between frequencies and both with observations of Leaf Area Index derived from the MODIS instrument as well as Vegetation Continuous Fields from AVHRR instruments. Trend analysis shows that since 1987 there has been a decline in VOD in the tropics and in large parts parts of east-central and north Asia along with a strong increase in India, large parts of Australia, south Africa, southeastern China and central north America. Using an autocorrelation analysis, we show that the merging of the multiple data sets successfully reduces the random error compared to the input data sets. In summary, VODCA shows vast potential for monitoring spatio-temporal ecosystem behaviour complementary to existing long-term vegetation products from optical remote sensing. The VODCA products (Moesinger et al., 2019) are open access and available under Attribution 4.0 International at https://doi.org/10.5281/zenodo.2575599.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-25
    Description: The European Space Agency's Climate Change Initiative for Soil Moisture (ESA CCI SM) merging algorithm generates consistent quality-controlled long-term (1978–2018) Climate Data Records for soil moisture which serves thousands of scientists and data users worldwide. It harmonises and merges soil moisture retrievals from multiple satellites into (i) an active-microwave-based only, (ii) a passive-microwave-based only, and a combined active-passive product, which are sampled to daily global images on a 0.25 degree regular grid. Since its first release in 2012 the algorithm has undergone substantial improvements which have so far not been thoroughly reported in the scientific literature. This paper fills this gap by reviewing and discussing the science behind the three major ESA CCI SM merging algorithm versions 2 (https://doi.org/10.5285/3729b3fbbb434930bf65d82f9b00111c; Wagner et al., 2018), 3 (https://doi.org/10.5285/b810601740bd4848b0d7965e6d83d26c; Dorigo et al., 2018a), and 4 (https://doi.org/10.5285/3a8a94c3fa464d68b6d70df291afd457; Dorigo et al., 2018b) and provides an outlook to the expected improvements planned for the next algorithm version 5.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...