ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Other Sources
  • 2015-2019  (2)
  • Earth System Science Data Discussions. 2019; 1-54. Published 2019 Sep 18. doi: 10.5194/essd-2019-146. [early online release]  (1)
  • Journal of Atmospheric and Oceanic Technology. 2016; 33(7): 1455-1471. Published 2016 Jul 01. doi: 10.1175/jtech-d-15-0122.1.  (1)
  • 110214
  • 61975
Collection
  • Articles  (2)
  • Other Sources
Years
  • 2015-2019  (2)
Year
Topic
  • 1
    Publication Date: 2016-07-01
    Description: Latent heat fluxes (LHF) play an essential role in the global energy budget and are thus important for understanding the climate system. Satellite-based remote sensing permits a large-scale determination of LHF, which, among others, are based on near-surface specific humidity . However, the random retrieval error () remains unknown. Here, a novel approach is presented to quantify the error contributions to pixel-level of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data, version 3.2 (HOAPS, version 3.2), dataset. The methodology makes use of multiple triple collocation (MTC) analysis between 1995 and 2008 over the global ice-free oceans. Apart from satellite records, these datasets include selected ship records extracted from the Seewetteramt Hamburg (SWA) archive and the International Comprehensive Ocean–Atmosphere Data Set (ICOADS), serving as the in situ ground reference. The MTC approach permits the derivation of as the sum of model uncertainty and sensor noise , while random uncertainties due to in situ measurement errors () and collocation () are isolated concurrently. Results show an average of 1.1 ± 0.3 g kg−1, whereas the mean () is in the order of 0.5 ± 0.1 g kg−1 (0.5 ± 0.3 g kg−1). Regional analyses indicate a maximum of exceeding 1.5 g kg−1 within humidity regimes of 12–17 g kg−1, associated with the single-parameter, multilinear retrieval applied in HOAPS. Multidimensional bias analysis reveals that global maxima are located off the Arabian Peninsula.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-18
    Description: The Fundamental Climate Data Record (FCDR) of Microwave Imager Radiances from the Satellite Application Facility on Climate Monitoring (CM SAF) comprises inter-calibrated and homogenised brightness temperatures from the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager/Sounder SSMIS radiometers. It covers the time period from October 1978 to December 2015 including all available data from the SMMR radiometer aboard Nimbus-7 and all SSM/I and SSMIS radiometers aboard the Defence Meteorological Satellite Program (DMSP) platforms. SMMR, SSM/I and SSMIS data are used for a variety of applications, such as analyses of the hydrological cycle, remote sensing of sea ice or as input into reanalysis projects. The improved homogenisation and inter-calibration procedure ensures the long term stability of the FCDR for climate related applications. All available raw data records from different sources have been reprocessed to a common standard, starting with the calibration of the raw Earth counts, to ensure a completely homogenised data record. The data processing accounts for several known issues with the instruments and corrects calibration anomalies due to along-scan inhomogeneity, moonlight intrusions, sunlight intrusions, and emissive reflector. Corrections for SMMR are limited because the SMMR raw data records were not available. Furthermore, the inter-calibration model incorporates a scene dependent inter-satellite bias correction and a non-linearity correction to the instrument calibration. The data files contain all available original sensor data (SMMR: Pathfinder Level 1b) and meta-data to provide a completely traceable climate data record. Inter-calibration and Earth incidence angle normalisation offsets are available as additional layers within the data files in order to keep this information transparent to the users. The data record is complemented with noise equivalent temperatures (NeΔT), quality flags, surface types, and Earth incidence angles. The FCDR together with its full documentation, including evaluation results, is freely available at: https://doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V003 (Fennig et al., 2017).
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...