ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 2020-2022  (2)
  • 1955-1959
  • Energies. 2020; 13(18): 4787. Published 2020 Sep 14. doi: 10.3390/en13184787.  (1)
  • Energies. 2021; 14(5): 1394. Published 2021 Mar 03. doi: 10.3390/en14051394.  (1)
  • 109050
Collection
  • Articles  (2)
Years
  • 2020-2022  (2)
  • 1955-1959
Year
Journal
  • 1
    Publication Date: 2020-09-14
    Description: Soot formation in combustion systems is a growing concern due to its adverse environmental and health effects. It is considered to be a tremendously complicated phenomenon which includes multiphase flow, thermodynamics, heat transfer, chemical kinetics, and particle dynamics. Although various numerical approaches have been developed for the detailed modeling of soot evolution, most industrial device simulations neglect or rudimentarily approximate soot formation due to its high computational cost. Developing accurate, easy to use, and computationally inexpensive numerical techniques to predict or estimate soot concentrations is a major objective of the combustion industry. In the present study, a supervised Artificial Neural Network (ANN) technique is applied to predict the soot concentration fields in ethylene/air laminar diffusion flames accurately with a low computational cost. To gather validated data, eight different flames with various equivalence ratios, inlet velocities, and burner geometries are modeled using the CoFlame code (a computational fluid dynamics (CFD) parallel combustion and soot model) and the Lagrangian histories of soot-containing fluid parcels are computed and stored. Then, an ANN model is developed and optimized using the Levenberg-Marquardt approach. Two different scenarios are introduced to validate the network performance; testing the prediction capabilities of the network for the same eight flames that are used to train the network, and for two new flames that are not within the training data set. It is shown that for both of these cases the ANN is able to predict the overall soot concentration field very well with a relatively low integrated error.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-03
    Description: Particulate matter (soot) emissions from combustion processes have damaging health and environmental effects. Numerical techniques with varying levels of accuracy and computational time have been developed to model soot formation in flames. High-fidelity soot models come with a significant computational cost and as a result, accurate soot modelling becomes numerically prohibitive for simulations of industrial combustion devices. In the present study, an accurate and computationally inexpensive soot-estimating tool has been developed using a long short-term memory (LSTM) neural network. The LSTM network is used to estimate the soot volume fraction (fv) in a time-varying, laminar, ethylene/air coflow diffusion flame with 20 Hz periodic fluctuation on the fuel velocity and a 50% amplitude of modulation. The LSTM neural network is trained using data from CFD, where the network inputs are gas properties that are known to impact soot formation (such as temperature) and the network output is fv. The LSTM is shown to give accurate estimations of fv, achieving an average error (relative to CFD) in the peak fv of approximately 30% for the training data and 22% for the test data, all in a computational time that is orders-of-magnitude less than that of high-fidelity CFD modelling. The neural network approach shows great potential to be applied in industrial applications because it can accurately estimate the soot characteristics without the need to solve the soot-related terms and equations.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...