ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • MDPI  (10)
  • Water  (5)
  • Energies  (4)
  • Information  (1)
  • 109050
  • 125281
  • 151794
  • 748
  • 1
    Publication Date: 2019
    Description: The ongoing evolution of the power system to implement climate action policies is resulting in a continuous increase in the penetration of renewables and the necessity of strengthening the transmission grid to optimize the usage of those sources and contain operation costs. Reinforcing the transmission lines or building new ones is a process that is made difficult due to authorization issues related with environmental and public acceptance concerns. Developing innovative conductors for overhead lines with enhanced performances with respect to the traditional ones would bring benefits in terms of energy efficiency increases in transmission and distribution grids without requiring the substitution of the existing towers. The project CALAJOULE (the genesis of the acronym comes from the union of the Italian verb “calare”-to decrease-to the third person singular, namely “cala” i.e., decreases, and of Joule, obvious reference to the active losses), cofinanced by the Italian Ministry of Economic Development in the framework of the “Ricerca di Sistema” program, aims at proposing innovative solutions for overhead line conductors for the containment of Joule power losses. In this paper, starting from the state-of-the-art of the currently adopted conductors, the main innovative solutions resulting from the project are presented and compared with the traditional ones to evaluate the achievable reduction in Joule losses.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: The drainage networks of our cities are currently experiencing a growing increase in runoff flows, caused mainly by the waterproofing of the soil and the effects of climate change. Consequently, networks originally designed correctly must endure floods with frequencies much higher than those considered in the design phase. The solution of such a problem is to improve the network. There are several ways to rehabilitate a network: conduit substitution as a former method or current methods such as storm tank installation or combined use of conduit substitution and storm tank installation. To find an optimal solution, deterministic or heuristic optimization methods are used. In this paper, a methodology for the rehabilitation of these drainage networks based on the combined use of the installation of storm tanks and the substitution of some conduits of the system is presented. For this, a cost-optimization method and a pseudo-genetic heuristic algorithm, whose efficiency has been validated in other fields, are applied. The Storm Water Management Model (SWMM) model for hydraulic analysis of drainage and sanitation networks is used. The methodology has been applied to a sector of the drainage network of the city of Bogota in Colombia, showing how the combined use of storm tanks and conduits leads to lower cost rehabilitation solutions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: The success of hydrological modeling of a high mountain basin depends in most case on the accurate quantification of the snowmelt. However, mathematically modeling snowmelt is not a simple task due to, on one hand, the high number of variables that can be relevant and can change significantly in space and, in the other hand, the low availability of most of them in practical engineering. Therefore, this research proposes to modify the original equation of the classical degree-day model to introduce the spatial and temporal variability of the degree-day factor. To evaluate the effects of the variability in the hydrological modeling and the snowmelt modeling at the cell and hillslope scale. We propose to introduce the spatial and temporal variability of the degree-day factor using maps of radiation indices. These maps consider the position of the sun according to the time of year, solar radiation, insolation, topography and shaded-relief topography. Our priority has been to keep the parsimony of the snowmelt model that can be implemented in high mountain basins with limited observed input. The snowmelt model was included as a new module in the TETIS distributed hydrological model. The results show significant improvements in hydrological modeling in the spring period when the snowmelt is more important. At cell and hillslope scale errors are diminished in the snowpack, improving the representation of the flows and storages that intervene in high mountain basins.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-16
    Description: Information, Vol. 8, Pages 147: Land Cover Classification from Multispectral Data Using Computational Intelligence Tools: A Comparative Study Information doi: 10.3390/info8040147 Authors: André Mora Tiago Santos Szymon Łukasik João Silva António Falcão José Fonseca Rita Ribeiro This article discusses how computational intelligence techniques are applied to fuse spectral images into a higher level image of land cover distribution for remote sensing, specifically for satellite image classification. We compare a fuzzy-inference method with two other computational intelligence methods, decision trees and neural networks, using a case study of land cover classification from satellite images. Further, an unsupervised approach based on k-means clustering has been also taken into consideration for comparison. The fuzzy-inference method includes training the classifier with a fuzzy-fusion technique and then performing land cover classification using reinforcement aggregation operators. To assess the robustness of the four methods, a comparative study including three years of land cover maps for the district of Mandimba, Niassa province, Mozambique, was undertaken. Our results show that the fuzzy-fusion method performs similarly to decision trees, achieving reliable classifications; neural networks suffer from overfitting; while k-means clustering constitutes a promising technique to identify land cover types from unknown areas.
    Electronic ISSN: 2078-2489
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Efficient design and management of water distribution networks is critical for conservation of water resources and minimization of both energy requirements and maintenance costs. Several computational routines have been proposed for the optimization of operational parameters that govern such networks. In particular, multi-objective evolutionary algorithms have proven to be useful both properly describing a network and optimizing its performance. Despite these computational advances, practical implementation of multi-objective optimization algorithms for water networks is an abstruse subject for researchers and engineers, particularly since efficient coupling between multi-objective algorithms and the hydraulic network model is required. Further, even if the coupling is successfully implemented, selecting the proper set of multi-objective algorithms for a given network, and addressing the quality of the obtained results (i.e., the approximate Pareto frontier) introduces additional complexities that further hinder the practical application of these algorithms. Here, we present an open-source project that couples the EPANET hydraulic network model with the jMetal framework for multi-objective optimization, allowing flexible implementation and comparison of different metaheuristic optimization algorithms through statistical quality assessment. Advantages of this project are discussed by comparing the performance of different multi-objective algorithms (i.e., NSGA-II, SPEA2, SMPSO) on case study water pump networks available in the literature.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Drainage networks are civil constructions which do not generally attract the attention of decision-makers. However, they are of crucial importance for cities; this can be seen when a city faces floods resulting in extensive and expensive damage. The increase of rain intensity due to climate change may cause deficiencies in drainage networks built for certain defined flows which are incapable of coping with sudden increases, leading to floods. This problem can be solved using different strategies; one is the adaptation of the network through rehabilitation. A way to adapt the traditional network approach consists of substituting some pipes for others with greater diameters. More recently, the installation of storm tanks makes it possible to temporarily store excess water. Either of these solutions can be expensive, and an economic analysis must be done. Recent studies have related flooding with damage costs. In this work, a novel solution combining both approaches (pipes and tanks) is studied. A multi-objective optimization algorithm based on the NSGA-II is proposed for the rehabilitation of urban drainage networks through the substitution of pipes and the installation of storage tanks. Installation costs will be offset by damage costs associated with flooding. As a result, a set of optimal solutions that can be implemented based on the objectives to be achieved by municipalities or decisions makers. The methodology is finally applied to a real network located in the city of Bogotá, Colombia.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: The analysis of transient flow is necessary to design adequate protection systems that support the oscillations of pressure produced in the operation of motor elements and regulation. Air valves are generally used in pressurized water pipes to manage the air inside them. Under certain circumstances, they can be used as an indirect control mechanism of the hydraulic transient. Unfortunately, one of the major limitations is the reliability of information provided by manufacturers and vendors, which is why experimental trials are usually used to characterize such devices. The realization of these tests is not simple since they require an enormous volume of previously stored air to be used in such experiments. Additionally, the costs are expensive. Consequently, it is necessary to develop models that represent the behaviour of these devices. Although computational fluid dynamics (CFD) techniques cannot completely replace measurements, the amount of experimentation and the overall cost can be reduced significantly. This work approaches the characterization of air valves using CFD techniques, including some experimental tests to calibrate and validate the results. A mesh convergence analysis was made. The results show how the CFD models are an efficient alternative to represent the behavior of air valves during the entry and exit of air to the system, implying a better knowledge of the system to improve it.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: It is well known that a low level of electrolytes in batteries produces a malfunction or even failure and irreversible damage. There are several kinds of sensors to detect the electrolyte level. Some of them are non-invasive, such as optical sensors of level, while some others are invasive; but both require one sensor per battery. This paper proposes a different approach to detect the low electrolyte level, which neither requires invasive sensors nor one sensor for each battery. The approach is based on the estimation of the internal resistance of an equivalent electrical circuit (EEC) model of the battery. To establish the detection criterion of the low level of electrolytes, a statistical analysis is proposed. To demonstrate the feasibility of this approach to be considered a valid method, multiple experiments were performed. The experiments consisted of determining how the internal resistance is affected at eight different levels of electrolyte at different aging levels of vented lead–acid (VLA) batteries. The results have demonstrated the feasibility of this approach. Hence, this approach has the potential to be used for the reducing of sensors and avoiding invasive methods to determine the low level of electrolytes.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: This paper deals with a battery energy storage system (BESS) in only one of its multiple operating modes, that is when the BESS is charging the battery bank and with the focus on the control scheme design for the BESS input stage, which is a three-phase LCL-filter PWM rectifier. The rectifier's main requirements comprise output voltage regulation, power factor control, and low input current harmonic distortion, even in the presence of input voltage variations. Typically, these objectives are modeled by using a dq model with its corresponding two-loop controller architecture, including an outer voltage loop and a current internal loop. This paper outlines an alternative approach to tackle the problem by using not only an input–output map linearization controller, with the aim of a single-loop current control, but also by avoiding the dq modeling. In this case, the voltage is indirectly controlled by computing the current references based on the converter power balance. The mathematical model of the three-phase LCL-filter PWM rectifier is defined based on the delta connection of the filter, which accomplishes the requirements of a 100 kW BESS module. Extensive simulation results are included to confirm the performance of the proposed closed-loop control in practical applications.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: The valorization and sustainable management of historic centers is a topic relevant to the cultural identity and heritage of European cities. A rational strategy to preserve the centers must consider both energy and environmental retrofitting, even if this is a complex issue requiring interdisciplinary approaches, dedicated diagnostic procedures, and specific tools. Within this context, this paper proposes an integrated method for energy and environmental analysis specifically devoted to historical building retrofit. Attention is focused on cases in which building management is not interested in renovation or in a deep conservation project, but instead in green management and maintenance overhaul. The basis of the procedure is the Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED O+M) rating protocol. The global goal was the definition of an intervention strategy indicating the principal direction of action. The first step is identifying critical issues in the operation of the building through energy diagnosis and dynamic thermophysical simulations. The second step is defining a panel of appropriate retrofit measures. The third step is choosing between alternatives to increase the sustainability performance following an environmental assessment scheme. Ca’ Rezzonico in Venice (Italy), a 17th-century palace, nowadays the seat of a museum, was used as a case study to apply the proposed methodology.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...