ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Copernicus  (3)
  • American Chemical Society (ACS)
  • Oxford University Press
  • 2015-2019  (3)
  • 1945-1949
  • Geoscientific Model Development Discussions. 2017; 1-27. Published 2017 Jul 13. doi: 10.5194/gmd-2017-150. [early online release]  (1)
  • Geoscientific Model Development Discussions. 2017; 1-36. Published 2017 Sep 05. doi: 10.5194/gmd-2017-186. [early online release]  (1)
  • Geoscientific Model Development Discussions. 2018; 1-32. Published 2018 Aug 17. doi: 10.5194/gmd-2018-196. [early online release]  (1)
  • 102049
Collection
  • Articles  (3)
Publisher
  • Copernicus  (3)
  • American Chemical Society (ACS)
  • Oxford University Press
Years
  • 2015-2019  (3)
  • 1945-1949
Year
Journal
Topic
  • 1
    Publication Date: 2017-07-13
    Description: We present an approach which we call PSyKAl that is designed to achieve portable performance for parallel, finite-difference Ocean models. In PSyKAl the code related to the underlying science is formally separated from code related to parallelisation and single-core optimisations. This separation of concerns allows scientists to code their science independently of the underlying hardware architecture and for optimisation specialists to be able to tailor the code for a particular machine independently of the science code. We have taken the free-surface part of the NEMO ocean model and created a new, shallow-water model named NEMOLite2D. In doing this we have a code which is of a manageable size and yet which incorporates elements of full ocean models (input/output, boundary conditions, etc.). We have then manually constructed a PSyKAl version of this code and investigated the transformations that must be applied to the middle/PSy layer in order to achieve good performance, both serial and parallel. We have produced versions of the PSy layer parallelised with both OpenMP and OpenACC; in both cases we were able to leave the natural-science parts of the code unchanged while achieving good performance on both multi-core CPUs and GPUs. In quantifying whether or not the obtained performance is `good' we also consider the limitations of the basic roofline model and improve on it by generating kernel-specific CPU ceilings.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-05
    Description: Weather and climate models are complex pieces of software which include many individual components, each of which is evolving under the pressure to exploit advances in computing to enhance some combination of a range of possible improvements (higher spatio/temporal resolution, increased fidelity in terms of resolved processes, more quantification of uncertainty etc). However, after many years of a relatively stable computing environment with little choice in processing architecture or programming paradigm (basically X86 processors using MPI for parallelism), the existing menu of processor choices includes significant diversity, and more is on the horizon. This computational diversity, coupled with ever increasing software complexity, leads to the very real possibility that weather and climate modelling will arrive at a chasm which will separate scientific aspiration from our ability to develop and/or rapidly adapt codes to the available hardware. In this paper we review the hardware and software trends which are leading us towards this chasm, before describing current progress in addressing some of the tools which we may be able to use to bridge the chasm. This brief introduction to current tools and plans is followed by a discussion outlining the scientific requirements for quality model codes which have satisfactory performance and portability, while simultaneously supporting productive scientific evolution. We assert that the existing method of incremental model improvements employing small steps which adjust to the changing hardware environment is likely to be inadequate for crossing the chasm between aspiration and hardware at a satisfactory pace, in part because institutions cannot have all the relevant expertise in house. Instead, we outline a methodology based on large community efforts in engineering and standardisation, one which will depend on identifying a taxonomy of key activities – perhaps based on existing efforts to develop domain specific languages, identify common patterns in weather and climate codes, and develop community approaches to commonly needed tools, libraries etc – and then collaboratively building up those key components. Such a collaborative approach will depend on institutions, projects and individuals adopting new interdependencies and ways of working.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-17
    Description: The GEOS-Chem model has been updated with the SAPRC-11 aromatics chemical mechanism, with the purpose of evaluating global and regional effects of the most abundant aromatics (benzene, toluene, xylenes) on the chemical species important for tropospheric oxidation capacity. The model evaluation based on surface and aircraft observations indicates good agreement for aromatics and ozone. A comparison between scenarios in GEOS-Chem with simplified aromatic chemistry (as in the standard setup, with no ozone formation from related peroxy radicals or recycling of NOx) and with the SAPRC-11 scheme reveals relatively slight changes in ozone, hydroxyl radical, and nitrogen oxides on a global mean basis (1–4%), although remarkable regional differences (5–20%) exist near the source regions. NOx decreases over the source regions and increases in the remote troposphere, due mainly to more efficient transport of peroxyacetyl nitrate (PAN), which is increased with the SAPRC aromatic chemistry. Model ozone mixing ratios with the updated aromatic chemistry increase by up to 5ppb (more than 10%), especially in industrially polluted regions. The ozone change is partly due to the direct influence of aromatic oxidation products on ozone production rates, and in part to the altered spatial distribution of NOx that enhances the tropospheric ozone production efficiency. Improved representation of aromatics is important to simulate the tropospheric oxidation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...