ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-21
    Description: Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g –1 for soluble sugars, 6–533 (mean = 94) mg g –1 for starch and 53–649 (mean = 153) mg g –1 for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R 2 = 0.05–0.12 for soluble sugars, 0.10–0.33 for starch and 0.01–0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g –1 for total NSC, compared with the range of laboratory estimates of 596 mg g –1 . Laboratories were reasonably consistent in their ranks of estimates among tissues for starch ( r = 0.41–0.91), but less so for total NSC ( r = 0.45–0.84) and soluble sugars ( r = 0.11–0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-08
    Description: Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine ( Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below –2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-25
    Description: We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1 , lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-28
    Description: Severe droughts may increase physiological stress on long-lived woody vegetation, occasionally leading to rapid defoliation and progressive increase in mortality of overstorey trees. Over the last few years, episodes of drought-induced tree dieback have been documented in a variety of woodlands and forests around the world. However, the factors determining tree survival and subsequent recovery are still poorly understood, especially in resprouter species. We have studied the effects of a single drought episode on crown condition in a holm oak ( Quercus ilex L.) forest located in NE Spain 7 years after the drought event. Generalized linear models were used to study the environmental correlates of forest crown condition 7 years after the drought event. Additionally, we evaluated the association between crown condition and the carbon and nutrient reserves stored in lignotubers 7 years after the drought. Our study reveals the multifactor nature of a drought-driven forest dieback in which soil depth and the characteristics of individual trees, particularly their number of stems, determined a complex spatial pattern of tree-level responses. This dieback was associated with a depletion of the carbon reserves in lignotubers 7 years after the episode, representing a reduction of up to 60% in highly drought-damaged trees. Interestingly, in the absence of new acute droughts, successive surveys in 2007–11 showed a direct association between carbon reserves depletion and further deterioration of crown condition. More frequent droughts, as predicted by climate change projections, may lead to a progressive depletion of carbon reserves and to a loss of resilience in Mediterranean resprouter species.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-03-29
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-04
    Description: The variability of ecophysiological traits associated with productivity (e.g., water relations, leaf structure, photosynthesis and nitrogen (N) content) and susceptibility to fungal and insect infection were investigated in five poplar clones ( Populus deltoides Batr.—Lux clone; Populus nigra L.—58-861 clone and Populus x canadensis Mönch.—Luisa Avanzo, I-214 and Adige clones) during their growing season. The objective of the study was to determine their physiological responses under summer constraints (characteristic of the Mediterranean climate) and to propose clone candidates for environmental restoration activities such as phytoremediation. Relative water content, the radiometric water index and 13 C isotope discrimination ( 13 C) results reflected improved water relations in Adige and Lux during summer drought. Leaf structural parameters such as leaf area, leaf mass per area, density ( D ) and thickness ( T ) indicated poorer structural adaptations to summer drought in clone 58-861. Nitrogen content and 13 C results pointed to a stomatal component as the main limitant of photosynthesis in all clones. Adige and Lux showed enhanced photoprotection as indicated by the size and the de-epoxidation index of the xanthophyll-cycle pool, and also improved antioxidant defence displayed by higher ascorbate, reduced glutathione, total phenolics and α-tocopherol levels. Photoprotective and antioxidative responses allowed all clones to maintain a high maximum quantum yield of PSII ( F v / F m ) with the exception of Luisa Avanzo and 58-861 which experienced slight photoinhibition in late spring. The study of susceptibility to rust ( Melampsora sp.) and lace bug ( Monosteira unicostata Muls. and Rey) infections showed Adige and Lux to be the most tolerant. Overall, these two clones presented high adaptability to summer conditions and improved resistance to abiotic and biotic stress, thereby making them highly commendable clones for use in environmental remediation programmes.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-21
    Description: The effects of iron (Fe) deficiency on the low-molecular-weight organic acid (LMWOA) metabolism have been investigated in Carrizo citrange (CC) [ Citrus sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.] roots. Major LMWOAs found in roots, xylem sap and root exudates were citrate and malate and their concentrations increased with Fe deficiency. The activities of several enzymes involved in the LMWOA metabolism were also assessed in roots. In the cytosolic fraction, the activities of malate dehydrogenase (cMDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes were 132 and 100% higher in Fe-deficient conditions, whereas the activity of pyruvate kinase was 31% lower and the activity of malic enzyme (ME) did not change. In the mitochondrial fraction, the activities of fumarase, MDH and citrate synthase enzymes were 158, 117 and 53% higher, respectively, in Fe-deficient extracts when compared with Fe-sufficient controls, whereas no significant differences between treatments were found for aconitase (ACO) activity. The expression of their corresponding genes in roots of Fe-deficient plants was higher than that measured in Fe-sufficient controls, except for ACO and ME. Also, dicarboxylate–tricarboxylate carrier (DTC) expression was significantly increased in Fe-deficient roots. In conclusion, Fe deficiency in CC seedlings causes a reprogramming of the carbon metabolism that involves an increase of anaplerotic fixation of carbon via PEPC and MDH activities in the cytosol and a shift of the Krebs cycle in the mitochondria towards a non-cyclic mode, as previously described in herbaceous species. In this scheme, DTC could play an important role shuttling both malate and reducing equivalents between the cytosol and the mitochondria. As a result of this metabolic switch malate and citrate concentrations in roots, xylem sap and root exudates increase.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-29
    Description: Plants exhibit a variety of drought responses involving multiple interacting traits and processes, which makes predictions of drought survival challenging. Careful evaluation of responses within species, where individuals share broadly similar drought resistance strategies, can provide insight into the relative importance of different traits and processes. We subjected Pinus sylvestris L. saplings to extreme drought (no watering) leading to death in a greenhouse to (i) determine the relative effect of predisposing factors and responses to drought on survival time, (ii) identify and rank the importance of key predictors of time to death and (iii) compare individual characteristics of dead and surviving trees sampled concurrently. Time until death varied over 3 months among individual trees (from 29 to 147 days). Survival time was best predicted (higher explained variance and impact on the median survival time) by variables related to carbon uptake and carbon/water economy before and during drought. Trees with higher concentrations of monosaccharides before the beginning of the drought treatment and with higher assimilation rates prior to and during the treatment survived longer (median survival time increased 25–70 days), even at the expense of higher water loss. Dead trees exhibited less than half the amount of nonstructural carbohydrates (NSCs) in branches, stem and relative to surviving trees sampled concurrently. Overall, our results indicate that the maintenance of carbon assimilation to prevent acute depletion of NSC content above some critical level appears to be the main factor explaining survival time of P. sylvestris trees under extreme drought.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-30
    Description: Water stress (WS) generates a number of physiological and morphological responses in plants that depend on the intensity and duration of stress as well as the plant species and development stage. In perennial plants, WS may affect plant development through cumulative effects that modify plant functions, architecture and production over time. Plant architecture depends on the fate of the terminal and axillary buds that can give rise, in the particular case of apple, to reproductive or vegetative growth units (GUs) of different lengths. In this study, the impact of long-term WS (7 years) on the fate of terminal and axillary buds was investigated in relation to flowering occurrence and production pattern (biennial vs regular) in the ‘Granny Smith’ cultivar. It was observed that WS decreased the total number of GUs per branch, regardless of their type. Conversely, WS did not modify the timing of the two successive developmental phases characterized by the production of long and medium GUs and an alternation of floral GUs over time, respectively. The analysis of GU successions over time using a variable-order Markov chain that included both the effects of the predecessor and water treatment revealed that WS reduced the transition towards long and medium GUs and increased the transition toward floral, short and dead GUs. WS also slightly increased the proportion of axillary floral GUs. The higher relative frequency of floral GUs compared with vegetative ones reduced the tendency to biennial bearing under WS. The accelerated ontogenetic trend observed under WS suggests lower vegetative growth that could, in turn, be beneficial to floral induction and fruit set.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-06
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...