ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5)
Collection
Language
  • English  (5)
Years
  • 1
    Publication Date: 2022-07-07
    Description: Located in the middle of Shanxi Province, northern China, Taiyuan basin is a dry and water-short region. This region is reaching alarming levels of aquifer depletion due to decades of groundwater overexploitation, which has caused severe land subsidence in the basin. The Wanjiazhai Water Diversion Project (WWDP) was designed to ease water scarcity by transporting water from the Yellow River to the Taiyuan basin through 452.4 km-long canals. By the end of 2018, the WWDP had supplied 2.87 billion m3 of water to Shanxi Province, which replenish the basin’s surface water body as well as the underground aquifer. The groundwater levels have continued to rise since 2003, with rising levels of more than 70 meters by 2018 in comparison with its low stand in 2000. In this study, we use 2007-2010 ENVISAT, ALOS-1 data, and 2017-2020 Sentinel-1 data to study the response of the basin’s aquifer to the groundwater rebound against the background of the water transfer project. We addressed the issue of tropospheric delay and its impact on the seasonal deformation by combing GACOS (Generic Atmospheric Correction Online Service) and a common-point stacking method. The accuracy improvement of deformation by this correction method was validated with measurements from seven continuous GPS stations in the basin. Groundwater rebound triggers ground uplift, which was identified in five areas by InSAR with a rate up to 25 mm/yr. The uplifting displacement time series are well correlated with groundwater level recovery. The land subsidence in the south of the basin continues but the rates decreased significantly in 2017-2020 detected from Sentinel-1 as compared to that in period 2007-2010 from ENVISAT and ALOS-1. All these uplifting signals and the decreasing rates of land subsidence found in Taiyuan city provide the indication that water management practices are successful in mitigating further subsidence. We found a significant seasonal displacement concentrated within the central region of the basin corresponding to the main irrigated areas in the Taiyuan basin. The maximum peak-to-peak amplitude is 43 mm observed from ENVISAT and decreases to 20 mm observed from Sentinel-1. The seasonal amplitudes change rapidly across faults, indicating that the fault is an effective barrier to across-fault fluid flow. To further quantify the causal relationships between water level and ground displacement, groundwater levels and ground displacement at three wells located near the area affected by significant seasonal land subsidence are analyzed by Cross Wavelet Transform (XWT) method. We found the time lags of about one month between land subsidence and the forcing groundwater level declines. Such a cross wavelet analysis with high spatial-temporal resolution therefore enables tracking the health of the aquifer system and highlights the system’s sustainability in aiding water resources allocation against the background of the water diversion project.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-17
    Description: The freshwater scarcity and sustainability of overexploited aquifers have been recognized as a big threat to global water security for human development. Consequently, much research has focused in the past on negative consequences of groundwater abstraction, but somewhat less has been documented about the impacts of adequate management practices to address water shortages. Here, using an integrated analysis of InSAR displacement data, groundwater, and geophysical modeling we show how combined management provisions and inter-basin water transfer project has affected the aquifer system in Taiyuan basin in North China. Following groundwater recovery, the alleviation of land subsidence was found with rates being reduced by up to ~70% in the period 2017–2020 with respect to the period 2007–2010. The increase in pore pressure caused by rising groundwater in Taiyuan city, north of the basin, turned four subsidence centers with rates exceeding 110 mm/yr in the 1980 to uplift centers with rates up to +25 mm/yr between 2017 and 2020. A simple linear elastic model for homogenous subsurface properties can explain InSAR-measured surface displacements well. In the central basin, we found a significant seasonal displacement with annual amplitude up to 43 mm (negative peak in autumn and positive peak in spring) related to the groundwater recharge and discharge due to agricultural pumping irrigation. Using cross-wavelet method, we showed a relatively short time lags (less than one month) between surface deformation and water level changes in the central basin, indicating the low-permeability clayey units have a limited influence in delaying the compaction of aquifer system. Quantifying the effects of adequate groundwater management measures and large-scale engineering approaches like inter-basin water transfer to recharge pumped aquifers provide insight for local governments and decision-makers to properly evaluate the impacts of their policy in recovering the sustainability and efficiency of aquifers in water-deficient basins.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
    Publication Date: 2021-12-23
    Description: The Tianjin coastal region in Bohai Bay, Northern China, is increasingly affected by storm-surge flooding which is exacerbated by anthropogenic land subsidence and global sea-level rise (SLR). We use a combination of InSAR (Synthetic Aperture Radar Interferometry), CGPS (continuous GPS), and tide-gauge observations to evaluate the spatial variability of relative SLR (RSLR) along the coastline of Tianjin. Land motion obtained by integration of two tracks of Sentinel-1 SAR images and nineteen CGPS stations shows that the recent land subsidence in Tianjin downtown is less than 8 mm/yr, which has significantly decreased with respect to the last 50 years (up to 110 mm/yr in the 1980s). This might benefit from the South-to-North Water Transfer Project which has provided more than 1.8 billion cubic meters of water for Tianjin city since 2014 and reduced groundwater consumption. However, subsidence centers have shifted to suburbs, especially along the coastline dominated by reclaimed harbors and aquaculture industry, with localized subsidence up to 170 mm/yr. Combining InSAR observations with sea level records from tide-gauge stations reveals spatial variability of RSLR along the coastline. We find that, in the aquaculture zones along the coastline, the rates of land subsidence are as high as 82 mm/yr due to groundwater extraction for fisheries, which subsequently cause local sea levels to rise nearly 30 times faster than the global average. New insights into land subsidence and local sea-level rise could help the countrys regulators to make decisions on ensuring the sustainable development of the coastal aquaculture industry.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-02
    Description: The dominant error source of Synthetic Aperture Radar Interferometry (InSAR) is atmospheric phase screen (APS), resulting in phase delay of the radar signal propagating through the atmosphere. The APS in the atmosphere can be decomposed into stratified and turbulent components. In this paper, we introduced a method to compensate for stratified component in a radar interferogram using ERA-Interim reanalysis products obtained from European Centre for Medium-Range Weather Forecasts (ECMWF). Our comparative results with radiosonde data demonstrated that atmospheric condition from ERA-Interim could produce reasonable patterns of vertical profiles of atmospheric states. The stratified atmosphere shows seasonal changes which are correlated with time. It cannot be properly estimated by temporal high-pass filtering which assumes that atmospheric effects are random in time in conventional persistent scatterer InSAR (PSI). Thus, the estimated deformation velocity fields are biased. Therefore, we propose the atmosphere-corrected PSI method that the stratified delay are corrected on each interferogram by using ERA-Interim. The atmospheric residuals after correction of stratified delay were interpreted as random variations in space and time which are mitigated by using spatial–temporal filtering. We applied the proposed method to ENVISAT ASAR images covering Taiyuan basin, China, to study the ground deformation associated with groundwater withdrawal. Experimental results show that the proposed method significantly mitigate the topography-correlated APS and the estimated ground displacements agree more closely with GPS measurements than the conventional PSI.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-02
    Description: Excessive groundwater exploitation is common through the Taiyuan basin, China, and is well known to result in ground subsidence. However, most ground subsidence studies in this region focus on a single place (Taiyuan city), and thus fail to demonstrate the regional extent of the deformation phenomena in the whole basin. In this study, we used Interferometric Synthetic Aperture Radar (InSAR) time series analysis to investigate land subsidence across the entire Taiyuan basin region. Our data set includes a total of 75 ENVISAT ASAR images from two different frames acquired from August 2003 to September 2010 and 33 TerraSAR-X scenes spanning between March 2009 and March 2010. ERA-Interim reanalysis was used to correct the stratified delay to reduce the bias expected from the systematic components of tropospheric delay. The residual delay after correction of stratified delay can be considered as a stochastic component and be mitigated through spatial-temporal filtering. A comparison with MERIS (Medium-Resolution Imaging Spectrometer) measurements indicates that our atmospheric corrections improved agreement over the conventional spatial-temporal filtering by about 20%. The displacement results from our atmosphere-corrected time series InSAR were further validated with continuous GPS data. We found eight subsiding centers in the basin and a surface uplift to the north of Taiyuan city. The causes of ground deformation are analyzed and discussed in relation to gravity data, pre-existing faults, and types of land use.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...