ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: IASS 16.89805
    Description / Table of Contents: Chronicles the efforts of nature photographer James Balog to document the receding of the Solheim glacier in Iceland, a consequence of climate change and global warming, in which strategically placed cameras would take one picture every hour for three years
    Type of Medium: Non-book medium
    Pages: 1 DVD (ca. 75 Min)
    Language: English
    Note: Extra features: Film festival Q&AsMaking chasing ice -- Science update-- Original theatrical trailer.. , DVD; NTSC, Region 1; widescreen presentation; Dolby Digital 5.1 Surround , In English with optional subtitles in German
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Melt takes place where the surface of glaciers or ice sheets interacts with the atmosphere. While the processes governing surface melt are fairly well understood, the pathways of the meltwater, from its origin to the moment it leaves a glacier system, remain enigmatic. It is not even guaranteed that meltwater leaves a glacier or ice sheet. On Greenland, for example, only slightly more than 50% of the meltwater runs off. The remainder mostly refreezes within the so-called firn cover of the ice sheet. This eBook contains 11 studies which tackle the challenge of understanding meltwater retention in snow and firn from various angles. The studies focus both on mountain glaciers and on the Greenland ice sheet and address challenges such as measuring firn properties, quantifying their influence on meltwater retention, modelling firn processes and meltwater refreezing as well as unravelling the mechanisms within the recently discovered Greenland firn aquifers.
    Keywords: GB3-5030 ; Q1-390 ; firn ; regional climate model ; expert elicitation ; refreezing ; mass balance ; Meltwater retention ; snow ; Greenland firn aquifer ; glacier and ice sheet ; sea level rise
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-21
    Description: The epidemic threshold of a social system is the ratio of infection and recovery rate above which a disease spreading in it becomes an epidemic. In the absence of pharmaceutical interventions (i.e. vaccines), the only way to control a given disease is to move this threshold by non-pharmaceutical interventions like social distancing, past the epidemic threshold corresponding to the disease, thereby tipping the system from epidemic into a non-epidemic regime. Modeling the disease as a spreading process on a social graph, social distancing can be modeled by removing some of the graphs links. It has been conjectured that the largest eigenvalue of the adjacency matrix of the resulting graph corresponds to the systems epidemic threshold. Here we use a Markov chain Monte Carlo (MCMC) method to study those link removals that do well at reducing the largest eigenvalue of the adjacency matrix. The MCMC method generates samples from the relative canonical network ensemble with a defined expectation value of λ max λmax . We call this the “well-controlling network ensemble” (WCNE) and compare its structure to randomly thinned networks with the same link density. We observe that networks in the WCNE tend to be more homogeneous in the degree distribution and use this insight to define two ad-hoc removal strategies, which also substantially reduce the largest eigenvalue. A targeted removal of 80% of links can be as effective as a random removal of 90%, leaving individuals with twice as many contacts. Finally, by simulating epidemic spreading via either an SIS or an SIR model on network ensembles created with different link removal strategies (random, WCNE, or degree-homogenizing), we show that tipping from an epidemic to a non-epidemic state happens at a larger critical ratio between infection rate and recovery rate for WCNE and degree-homogenized networks than for those obtained by random removals.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-08
    Description: What do generic networks that have certain properties look like? We use relative canonical network ensembles as the ensembles that realize a property R while being as indistinguishable as possible from a background network ensemble. This allows us to study the most generic features of the networks giving rise to the property under investigation. To test the approach we apply it to study properties thought to characterize 'small-world networks'. We consider two different defining properties, the 'small-world-ness' of Humphries and Gurney, as well as a geometric variant. Studying them in the context of Erdős-Rényi and Watts–Strogatz ensembles we find that all ensembles studied exhibit phase transitions to systems with large hubs and in some cases cliques. Such features are not present in common examples of small-world networks, indicating that these properties do not robustly capture the notion of small-world networks. We expect the overall approach to have wide applicability for understanding network properties of real world interest, such as optimal ride-sharing designs, the vulnerability of networks to cascades, the performance of communication topologies in coordinating fluctuation response or the ability of social distancing measures to suppress disease spreading.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-10
    Description: Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-13
    Description: Time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions have opened up a new avenue of opportunities for studying large-scale mass redistribution and transport in the Earth system. Over the past 19 years, GRACE/GRACE-FO time-variable gravity measurements have been widely used to study mass variations in different components of the Earth system, including the hydrosphere, ocean, cryosphere, and solid Earth, and significantly improved our understanding of long-term variability of the climate system. We carry out a comprehensive review of GRACE/GRACE-FO satellite gravimetry, time-variable gravity fields, data processing methods, and major applications in several different fields, including terrestrial water storage change, global ocean mass variation, ice sheets and glaciers mass balance, and deformation of the solid Earth. We discuss in detail several major challenges we need to face when using GRACE/GRACE-FO time-variable gravity measurements to study mass changes, and how we should address them. We also discuss the potential of satellite gravimetry in detecting gravitational changes that are believed to originate from the deep Earth. The extended record of GRACE/GRACE-FO gravity series, with expected continuous improvements in the coming years, will lead to a broader range of applications and improve our understanding of both climate change and the Earth system.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-03
    Description: Measuring the Earth energy imbalance (EEI) at the top of the atmosphere, is challenging as it is a globally integrated variable whose variations are small (0.5-1 W.m−2) compared to the amount of energy entering the climate system (~ 340 W/m²). Accuracies better than 0.1 W/m² are needed to evaluate the temporal variations of the EEI at decadal and longer time-scales. The CERES experiment provides EEI time variations with a typical uncertainty of ± 0.1 W/m² and shows a trend in EEI of 0.50 +/- 0.47 W/m² per decade over the period 2005-2019.The combination of space altimetry and space gravimetry measurements provides an estimate of the global ocean heat content (GOHC) change which is an accurate proxy of EEI (because 〉90% of the excess of energy stored in response to the EEI is accumulated in the ocean in the form of heat). In Marti et al. (2021), the GOHC was estimated at global scales based on the combination of space gravimetry and altimetry measurements over 2002-2016. Changes in the EEI were then derived with realistic estimates of its uncertainty.Here we present the improvements brought to the GOHC and EEI over an extended period (2002-2021), such as the calculation of the expansion efficiency of heat over the total water column, the improvement of barystatic sea level change solution, the empirical correction of the wet tropospheric correction of Jason-3 altimeter measurements (Barnoud et al., 2022).The space geodetic GOHC-EEI product based on space gravimetry and altimetry is available on AVISO at https://doi.org/10.24400/527896/a01-2020.003.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...