ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (26)
  • 1
    Publication Date: 2021-10-26
    Description: The relationship between River Ammer flood frequency variability, extreme summer climate over Europe, and solar forcing is investigated. First, we used observational data to evaluate extreme weather and climate anomaly patterns associated with flood and solar forcing as well as the possible dynamical mechanisms behind them. Then, the annual resolution flood layer record from the Lake Ammer sediments is analysed to evaluate millennial-scale variability of floods and possible related extreme climate patterns back to 5,500 years BP. A composite analysis reveals that observed River Ammer flood frequency variability at interannual to multidecadal time scales is connected to large-scale extreme precipitation and temperature patterns. From a synoptic-scale perspective, the extreme precipitation pattern associated with floods is related to an increase in the frequency of high upper-level potential vorticity (PV) events over western Europe and a decrease over eastern Europe and western Russia. Increased (decreased) frequency of upper-level high PV events is related to more (less) surface extreme precipitation occurrence. Furthermore, we show that increased frequency of upper-level high PV events over western Europe is associated with enhanced blocking activity over eastern Europe. Therefore, the out of phase interannual to millennial-scale variations of River Ammer flood frequency and solar irradiance, as presented in previous studies, can be explained by a solar modulation of eastern European-western Russia summer blocking and associated upstream upper-level wave breaking activity. In addition, we identify two distinct quasi-periodic signals in both frequency of Lake Ammer flood layer and solar irradiance records with periods of ~900 years and ~2,300 years. We argue that similar cycles should dominate millennial-scale variations of blocking activity in eastern Europe-western Russia as well as extreme precipitation and flood frequency variability over central and western Europe during the last ~5,500 years.
    Keywords: 551.6 ; floods ; extreme precipitation ; potential vorticity ; solar forcing
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-10
    Description: Varved lake sediments provide climatic records with seasonal to annual resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables us to explore the database of varved lake sediments using a connected data model and can generate a state-of-the-art graphic representation of a multisite comparison. This allows the reassessment of existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits the exploration of varve thickness data. In this paper, we report in detail on the data-mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies, as well as the technical infrastructure of the database. Additional palaeoclimatic proxy data will be provided in forthcoming updates. The VARDA graph database and user interface can be accessed online at https://varve.gfz-potsdam.de (last access: 15 September 2020), all datasets of version 1.0 are available at https://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-13
    Description: This dataset resulted from a parallel monitoring at two lakes, Lake Tiefer See (near Klocksin, TSK; 53° 35.5’ N, 12° 31.8’ E; 62 masl; N Germany) and Lake Czechowskie (Jezioro Czechowskie, JC; 53° 52.4’ N, 18° 14.3’ E; 108 masl; N Poland), and includes four different type of data for both locations: (i) sediment cores microfacies data, (ii) sediment fluxes and composition, (iii) selected water column data, and (iv) selected meteorological information obtained on site. This dual lake monitoring set-up was established in 2012 with the aim to investigate seasonal sedimentation and varve forming processes in detail. The datasets are provided in individual *.csv files, per type of data and per lake. The thin section data from surface sediment cores comprises the thicknesses of the most recent calcite varves’ sub-layers: spring diatom sub-layer, summer calcite sub-layer, and autumn/winter re-suspension sub-layer. The sediment flux data was obtained from sediment traps located in different water depths (epi- and hypolimnion), and the sediment composition is given by the fluxes of total organic carbon (TOC), calcium carbonate (as calculated from total inorganic carbon; TIC), and diatoms & inorganic matter. The water column data comprises water temperature from stationary loggers, and dissolved oxygen measured in ~ 1 meter depth-resolution. The meteorological data includes daily averages of air temperature and mean wind-speed, and summed daily rainfall. Further details about the sampling and analytical methods, data acquisition, and processing are given in Roeser et al. (2021; http://doi.org/10.1111/bor.12506).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: Fire is a natural component of global biogeochemical cycles and closely related to changes in human land use. Whereas climate-fuel relationships seem to drive both global and subcontinental fire regimes, human-induced fires are prominent mainly on a local scale. Furthermore, the basic assumption that relates humans and fire regimes in terms of population densities, suggesting that few human-induced fires should occur in periods and areas of low population density, is currently debated. Here, we analyze human-fire relationships throughout the Holocene and discuss how and to what extent human-driven fires affected the landscape transformation in the Central European Lowlands (CEL). We present sedimentary charcoal composites on three spatial scales and compare them with climate model output and land cover reconstructions from pollen records. Our findings indicate that widespread natural fires only occurred during the early Holocene. Natural conditions (climate and vegetation) limited the extent of wildfires beginning 8500 cal. BP, and diverging subregional charcoal composites suggest that Mesolithic hunter-gatherers maintained a culturally diverse use of fire. Divergence in regional charcoal composites marks the spread of sedentary cultures in the western and eastern CEL. The intensification of human land use during the last millennium drove an increase in fire activity to early-Holocene levels across the CEL. Hence, humans have significantly affected natural fire regimes beyond the local scale – even in periods of low population densities – depending on diverse cultural land-use strategies. We find that humans have strongly affected land-cover- and biogeochemical cycles since Mesolithic times.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: Central elements of the TERENO network are “terrestrial observatories” at the catchment scale which were selected in climate sensitive regions of Germany for the regional analyses of climate change impacts. Within these observatories small scale research facilities and test areas are placed in order to accomplish energy, water, carbon and nutrient process studies across the different compartments of the terrestrial environment. Following a hierarchical scaling approach (point-plot-field) these detailed information and the gained knowledge will be transferred to the regional scale using integrated modelling approaches. Furthermore, existing research stations are enhanced and embedded within the observatories. In addition, mobile measurement platforms enable monitoring of dynamic processes at the local scale up to the determination of spatial pattern at the regional scale are applied within TERENO.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Many German lakes experienced significant water level declines in recent decades that are not fully understood due to the short observation period. At a typical northeastern German groundwater-fed lake with a complex basin morphology, an acoustic sub-bottom profile was analysed together with a transect of five sediment cores, which were correlated using multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera). Shifts in the boundary between sand and mud deposition were controlled by lake level changes, and hence, allowed the quantification of an absolute lake level amplitude of ~8 m for the Holocene. This clearly exceeded observed modern fluctuations of 1.3 m (AD 1973–2010). Past lake level changes were traced continuously using the calcium-record. During high lake levels, massive organic muds were deposited in the deepest lake basin, whereas lower lake levels isolated the sub-basins and allowed carbonate deposition. During the beginning of the Holocene (〉9700 cal. a BP), lake levels were high, probably due to final melting of permafrost and dead-ice remains. The establishment of water-use intensive Pinus forests caused generally low (3–4 m below modern) but fluctuating lake levels (9700–6400 cal. a BP). Afterwards, the lake showed an increasing trend and reached a short-term highstand at c. 5000 cal. a BP (4 m above modern). At the transition towards a cooler and wetter late Holocene, forests dominated by Quercus and Fagus and initial human impact probably contributed more positively to groundwater recharge. Lake levels remained high between 3800 and 800 cal. a BP, but the lake system was not sensitive enough to record short-term fluctuations during this period. Lake level changes were recorded again when humans profoundly affected the drainage system, land cover and lake trophy. Hence, local Holocene water level changes reflect feedbacks between catchment and vegetation characteristics and human impact superimposed by climate change at multiple temporal scales.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2020-02-12
    Description: Oxygen-isotope ratios of precipitation (δ18OP) inferred from deep-lake ostracods from the Ammersee (southern Germany) provide a climate record with decadal resolution. The record in detail shows many of the rapid climate shifts seen in central Greenland ice cores between 15,000 and 5000 years before the present (B.P.). Negative excursions in the estimated δ18OP from both of these records likely reflect short weakenings of the thermohaline circulation caused by episodic discharges of continental freshwater into the North Atlantic. Deviating millennial-scale trends, however, indicate that climate gradients between Europe and Greenland changed systematically, reflecting a gradual rearrangement of North Atlantic circulation during deglaciation.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...