ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
Collection
Language
  • English  (2)
Years
  • 1
    Publication Date: 2020-02-12
    Description: The Andean Orogeny is the result of the upper-plate crustal shortening during the Cenozoic Nazca plate subduction beneath South America plate. With up to ~300 km shortening, the Earths second highest Altiplano-Puna Plateau was formed with a pronounced N-S oriented deformation diversity. Furthermore, the tectonic shortening in the Southern Andes was much less intensive and started much later. The mechanism of the shortening and the nature of N-S variation of its magnitude remain controversial. The previous studies of the Central Andes suggested that they might be related to the N-S variation in the strength of the lithosphere, friction coupling at slab interface, and are probably influenced by the interaction of the climate and tectonic systems. However, the exact nature of the strength variation was not explored due to the lack of high numerical resolution and 3D numerical models at that time. Here we will employ large-scale subduction models with a high resolution to reveal and quantify the factors controlling the strength of lithospheric structures and their effect on the magnitude of tectonic shortening in the South America plate between 18-35S. These high-resolution models are performed by using the highly scalable parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model). This code is based on finite difference staggered grid approach and employs massive linear and non-linear solvers within the PETSc library to complete high-performance MPI-based parallelization in geodynamic modeling. Currently, in addition to benchmark-models we are developing high-resolution (〈 1km) 2D subduction models with application to Nazca-South America convergence. In particular, we will present the models focusing on the effect of friction reduction in the Paleozoic-Cenozoic sediments above the uppermost crust in the Subandean Ranges. Future work will be focused on the origin of different styles of deformation and topography evolution in Altiplano-Puna Plateau and Central-Southern Andes through 3D modeling of large-scale interaction of subducting and overriding plates.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-05
    Description: In the present study, the structure of sedimentary basins in the eastern Asia Arctic zone is analysed by employing the approach based on decompensative gravity anomalies. Two obtained models, differing in their initial conditions, provide thickness and density of sediments in the study area. They demonstrate essentially new details on the structure, shape, and density of the sedimentary basins. Significant changes in the sedimentary thickness and the depo-centre location have been found for the Anadyr Basin in its continental part. Also, new details on the sedimentary thickness distribution have been revealed for the central part of the Penzhin and Pustorets basins; for the latter, the new location of the depo-centre has been identified. The new model agrees well with the seismic data on the sedimentary thickness for the offshore part of the Chauna Basin confirming that the method is robust. The most significant lateral redistribution of the thickness has been found for the Lower Cretaceous coal-bearing strata in the northern part of the Zyryanka Basin, where the connection of two coal-bearing zones, which was not previously mapped, has been identified. Also, the new details on the sedimentary thickness distribution have been discovered for the Primorsk Basin. Therefore, the new results substantially improve our knowledge about the region, since previous geological and geophysical studies were unsystematic, sparse, and limited in depth. Thus, the implementation of the decompensative gravity anomalies approach provides a better understanding of the evolution of the sedimentary basins and the obtained results can be used for planning future detailed studies in the area.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...