ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Englisch  (3)
Sammlung
Sprache
  • Englisch  (3)
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-02-03
    Beschreibung: We show how an extended period of quiet solar wind conditions contributes to a quiet state of the plasmasphere that expands up to L ~ 5.5, which creates the perfect conditions for wave-particle interactions between the radiation belt electrons and whistler-mode hiss waves. The correlation between the hiss waves and the plasma density is direct with hiss wave power increasing with plasma density, while it was generally assumed that these quantities can be specified independently. Whistler-mode hiss waves pitch angle diffuse and ultimately scatter freshly injected electrons into the atmosphere until the slot region is formed between the inner and outer belt and the outer belt is drastically reduced. In this study, we use and combine Van Allen Probes observations and Fokker-Planck numerical simulations. The Fokker-Planck model uses consistent event-driven pitch angle diffusion coefficients from whistler-mode hiss waves. Observations and simulations allow us to reach a global understanding of the variations in the trapped electron population with time, space, energy, and pitch angle that is based on the existing theory of quasi-linear wave-particle interactions. We show, for instance, the outer belt is pitch-angle homogeneous, which is explained by the event-driven diffusion coefficients that are roughly constant for equatorial pitch angle α0~〈60°, E〉100 keV, 3.5〈L〈Lpp~6. The impact of this work is to bring an improved understanding of the belt evolution based on the integration of high quality and highly temporally and spatially resolved measurements that are integrated in modern computations. We also propose the event-driven method as an accurate method (within ×2) to predict the electron flux decay after storms.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-03-17
    Beschreibung: Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred hertz and 10 kHz, which are generated by the same lightning strokes and which propagate along very similar paths to the two spacecraft. Measured amplitudes of the magnetic field fluctuations are the same within ∼14% precision of our analysis, corresponding to 1.2 dB. Currently, archived electric field measurements show twice larger amplitudes on Arase compared to Van Allen Probes but they start to match within ∼33% precision (2.5 dB) once the newest results on the interface of the antennas to the surrounding plasma are included in the calibration procedures. Ray tracing simulations help us to build a consistent scenario of wave propagation to both spacecraft reflected by a successful inter-calibration of the polarization and propagation parameters obtained from multicomponent measurements. We succeed in linking the spacecraft observations to localizations of lightning return strokes by two different ground-based networks which independently verify the correctness of the Universal Time tags of waveform measurements by both spacecraft missions, with an uncertainty better than 10 ms.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-03-18
    Beschreibung: Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth's atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fortuitous simultaneous observation of EMIC wave activity by the RBSP-B and Arase satellites in conjunction with ground-based observations of EEP by a subionospheric VLF network. We describe a simple method for determining the longitudinal extent of the EMIC source region based on these observations, calculating a width of 0.75 hr MLT and a drift rate of 0.67 MLT/hr. We describe how this may be applied to other similar EMIC wave events.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...