ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (10)
  • Englisch  (10)
  • 1
    Publikationsdatum: 2022-03-21
    Beschreibung: The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP-5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP-5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP-6 are of interest. Here, we analyse 32 models of the latest CMIP-6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with high agreement between the models and independent of the SSP; the multi-model mean for JJAS projects an increase of 0.33 mm/day and 5.3 % per degree of global warming. This is significantly higher than in the CMIP-5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP-6 simulations largely confirm the findings from CMIP-5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-06-13
    Beschreibung: Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June–September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965–2015 are projected to occur 8 times more often in 2050–2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-06-16
    Beschreibung: Global warming is expected to exacerbate heat stress. Additionally, biogeophysical effects of land cover and land management changes (LCLMC) could substantially alter temperature and relative humidity locally and non-locally. Thereby, LCLMC could affect the occupational capacity to safely perform physical work under hot environments (labor capacity). However, these effects have never been quantified globally using a multi-model setup. Building on results from stylized sensitivity experiments of (a) cropland expansion, (b) irrigation expansion, and (c) afforestation conducted by three fully coupled Earth System Models (ESMs), we assess the local as well as non-local effects on heat stress and labor capacity. We found that LCLMC leads to substantial changes in temperature; however, the concomitant changes in humidity could largely diminish the combined impact on moist heat. Moreover, cropland expansion and afforestation cause inconsistent responses of day- and night-time temperature, which has strong implications for labor capacity. Across the ESMs, the results are mixed in terms of sign and magnitude. Overall, LCLMC result in non-negligible impacts on heat stress and labor capacity in low-latitude regions during the warmest seasons. In some locations, the changes of monthly average labor capacity, which are induced by the local effects of individual LCLMC options, could reach −14 and +15 percentage points. Thus, LCLMC-induced impacts on heat stress and their consequences for adaptation should be accounted for when designing LCLMC-related policies to ensure sustainable development.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-07-26
    Beschreibung: Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic devel- opment and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections high- light that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income region.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-10-20
    Beschreibung: Anthropogenic emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have made significant contributions to global warming since the pre-industrial period and are therefore targeted in international climate policy. There is substantial interest in tracking and apportioning national contributions to climate change and informing equitable commitments to decarbonisation. Here, we introduce a new dataset of national contributions to global warming caused by historical emissions of carbon dioxide, methane, and nitrous oxide during the years 1851–2021, which are consistent with the latest findings of the IPCC. We calculate the global mean surface temperature response to historical emissions of the three gases, including recent refinements which account for the short atmospheric lifetime of CH4. We report national contributions to global warming resulting from emissions of each gas, including a disaggregation to fossil and land use sectors. This dataset will be updated annually as national emissions datasets are updated.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2023-12-07
    Beschreibung: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO2 products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2022, EFOS increased by 0.9 % relative to 2021, with fossil emissions at 9.9±0.5 Gt C yr−1 (10.2±0.5 Gt C yr−1 when the cement carbonation sink is not included), and ELUC was 1.2±0.7 Gt C yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1±0.8 Gt C yr−1 (40.7±3.2 Gt CO2 yr−1). Also, for 2022, GATM was 4.6±0.2 Gt C yr−1 (2.18±0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.8±0.4 Gt C yr−1, and SLAND was 3.8±0.8 Gt C yr−1, with a BIM of −0.1 Gt C yr−1 (i.e. total estimated sources marginally too low or sinks marginally too high). The global atmospheric CO2 concentration averaged over 2022 reached 417.1±0.1 ppm. Preliminary data for 2023 suggest an increase in EFOS relative to 2022 of +1.1 % (0.0 % to 2.1 %) globally and atmospheric CO2 concentration reaching 419.3 ppm, 51 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt C yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-05-15
    Beschreibung: The IPCC Assessment Reports offer the scientific foundation for international climate negotiations and constitute an unmatched resource for climate change researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding across diverse climate change research communities, we have streamlined an annual process to identify and synthesise essential research advances. We collected input from experts on different fields using an online questionnaire and prioritised a set of ten key research insights with high policy relevance. This year we focus on: (1) looming overshoot of the 1.5°C warming limit, (2) urgency of phasing-out fossil fuels, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future of natural carbon sinks, (5) need for join governance of biodiversity loss and climate change, (6) advances in the science of compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. We first present a succinct account of these Insights, reflect on their policy implications, and offer an integrated set of policy relevant messages. This science synthesis and science communication effort is also the basis for a report targeted to policymakers as a contribution to elevate climate science every year, in time for the UNFCCC COP.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-03-25
    Beschreibung: Quantifying the anthropogenic fluxes of CO2 is important to understand the evolution of carbon sink capacities, on which the required strength of our mitigation efforts directly depends. For the historical period, the global carbon budget (GCB) can be compiled from observations and model simulations as is done annually in the Global Carbon Project's (GCP) carbon budgets. However, the historical budget only considers a single realization of the Earth system and cannot account for internal climate variability. Understanding the distribution of internal climate variability is critical for predicting the future carbon budget terms and uncertainties. We present here a decomposition of the GCB for the historical period and the RCP4.5 scenario using single‐model large ensemble simulations from the Max Planck Institute Grand Ensemble (MPI‐GE) to capture internal variability. We calculate uncertainty ranges for the natural sinks and anthropogenic emissions that arise from internal climate variability, and by using this distribution, we investigate the likelihood of historical fluxes with respect to plausible climate states. Our results show these likelihoods have substantial fluctuations due to internal variability, which are partially related to El Niño‐Southern Oscillation (ENSO). We find that the largest internal variability in the MPI‐GE stems from the natural land sink and its increasing carbon stocks over time. The allowable fossil fuel emissions consistent with 3 C warming may be between 9 and 18 Pg C yr−1. The MPI‐GE is generally consistent with GCP's global budgets with the notable exception of land‐use change emissions in recent decades, highlighting that human action is inconsistent with climate mitigation goals.
    Beschreibung: Key Points: We use a single‐model large ensemble to estimate uncertainties from internal climate variability in the global carbon budget. The land sink accounts for most internal climate uncertainty which may permit 9–18 Pg C yr−1 in allowable emissions by 2050 (for 3°C warming).
    Beschreibung: European Union's Horizon 2020
    Schlagwort(e): ddc:551.9 ; ddc:551.6
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2021-09-27
    Beschreibung: The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO 2 growth rate, fossil fuel emissions, and modeled (bottom-up) land and ocean fluxes cannot be fully closed, leading to a “budget imbalance,” highlighting uncertainties in GCB components. However, no systematic analysis has been performed on which regions or processes contribute to this term. To obtain deeper insight on the sources of uncertainty in global and regional carbon budgets, we analyzed differences in Net Biome Productivity (NBP) for all possible combinations of bottom-up and top-down data sets in GCB2018: (i) 16 dynamic global vegetation models (DGVMs), and (ii) 5 atmospheric inversions that match the atmospheric CO 2 growth rate. We find that the global mismatch between the two ensembles matches well the GCB2018 budget imbalance, with Brazil, Southeast Asia, and Oceania as the largest contributors. Differences between DGVMs dominate global mismatches, while at regional scale differences between inversions contribute the most to uncertainty. At both global and regional scales, disagreement on NBP interannual variability between the two approaches explains a large fraction of differences. We attribute this mismatch to distinct responses to El Niño–Southern Oscillation variability between DGVMs and inversions and to uncertainties in land use change emissions, especially in South America and Southeast Asia. We identify key needs to reduce uncertainty in carbon budgets: reducing uncertainty in atmospheric inversions (e.g., through more observations in the tropics) and in land use change fluxes, including more land use processes and evaluating land use transitions (e.g., using high-resolution remote-sensing), and, finally, improving tropical hydroecological processes and fire representation within DGVMs.
    Schlagwort(e): 551.9 ; atmospheric inversions ; global carbon budget ; dynamic global vegetation models ; carbon cycle
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2021-10-27
    Beschreibung: Deforestation influences surface properties such as surface roughness, resulting in changes in the surface energy balance and surface temperature. Recent studies suggest that the biogeophysical effects are dominated by changing roughness, and it remains unclear whether this can be reconciled with earlier modeling studies that highlighted the importance of a reduction of evapotranspiration in the low latitudes and a reduction of net shortwave radiation at the surface in the high latitudes. To clarify this situation, we analyze the local effects of deforestation on surface energy balance and temperature in the MPI-ESM climate model by performing three separate experiments: switching from forest to grass all surface properties, only surface albedo, and only surface roughness. We find that the locally induced changes in surface temperature are dominated by changes in surface roughness for the annual mean, the response of the diurnal amplitude, and the seasonal response to deforestation. For these three quantities, the results of the MPI-ESM lie within the range of observation-based data sets. Deforestation-induced decreases in surface roughness contribute substantially to winter cooling in the boreal regions and to decreases in evapotranspiration in the tropics. By comparing the energy balance decompositions from the three experiments, the view that roughness changes dominate the biogeophysical consequences of deforestation can be reconciled with the earlier studies highlighting the relevance of evapotranspiration.
    Schlagwort(e): 551.5 ; deforestation ; land use change ; biogeophysical effects ; local effects ; surface roughness ; surface energy balance
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...