ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: By stimulating adrenal gland and corticosteroid synthesis, the adrenocorticotropic hormone (ACTH) plays a central role in response to stress. In this Research Topic, a particular attention has been given to the recent developments on adrenocortical zonation; the growth-promoting activities of ACTH; the various steps involved in acute and chronic regulation of steroid secretion by ACTH, including the effect of ACTH on circadian rhythms of glucocorticoid secretion. The Research Topic also reviews progress and challenges surrounding the properties of ACTH binding to the MC2 receptor (MC2R), including the importance of melanocortin-2 receptor accessory protein (MRAP) in MC2R expression and function, the various intracellular signaling cascades, which involve not only protein kinase A, the key mediator of ACTH action, but also phosphatases, phosphodiesterases, ion channels and the cytoskeleton. The importance of the proteins involved in the cell detoxification is also considered, in particular the effect that ACTH has on protection against reactive oxygen species generated during steroidogenesis. The impact of the cellular microenvironment, including local production of ACTH is discussed, both as an important factor in the maintenance of homeostasis, but also in pathological situations, such as severe inflammation. Finally, the Research Topic reviews the role that the pituitary-adrenal axis may have in the development of metabolic disorders. In addition to mutations or alterations of expression of genes encoding components of the steroidogenesis and signaling pathways, chronic stress and sleep disturbance are both associated with hyperactivity of the adrenal gland. A resulting effect is increased glucocorticoid secretion inducing food intake and weight gain, which, in turn, leads to insulin and leptin resistance. These aspects are described in detail in this Research Topic by key investigators in the field. Many of the aspects addressed in this Research Topic still represent a stimulus for future studies, their outcome aimed at providing evidence of the central position occupied by the adrenal cortex in many metabolic functions when its homeostasis is disrupted. An in-depth investigation of the mechanisms underlying these pathways will be invaluable in developing new therapeutic tools and strategies.
    Keywords: RC648-665 ; R5-920 ; Adrenal Cortex ; cortisol ; MC2R ; signaling ; corticosteroids ; proliferation ; adrenal tumors ; Cushing ; ACTH ; Aldosterone
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: The regulated secretory pathway is a hallmark of neuroendocrine cells. This process comprises many sequential steps, which include ER-associated protein synthesis, post-translational modification of proteins in the Golgi complex, sorting and packing of secretory proteins into carrier granules, cytoskeleton-based granule transport towards the plasma membrane and tethering, docking and fusion of granules with specialized releasing zones. Each stage is subjected to a rigorous regulation by a plethora of factors that function in a spatially and temporarily coordinated fashion. Much effort has been devoted to characterize the precise role of the regulatory proteins participating in the different steps of this process and to identify new factors in order to obtain a unifying picture of the secretory pathway. In spite of this and given the enormous complexity of the process, certain stages are not fully understood yet and many players remain to be identified. The aim of this Research Topic is to gather review articles and original research papers on the molecular mechanisms that govern and ensure the correct release of neuropeptides.
    Keywords: RC648-665 ; R5-920 ; RC321-571 ; Q1-390 ; Neuroendocrine Cells ; regulated exocytosis ; Endocytosis ; secretion ; large dense core vesicles ; Membrane trafficking ; super-resolution microscopy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2023-12-21
    Description: The adrenal gland plays essential roles in the control of body homeostasis, stress and immune responses. The adrenal cortex represents up to 90% of the gland and is specialised in the production of mineralocorticoids, glucocorticoids and adrenal androgens. This production is tightly coordinated and results from a unique zonal organisation. Although our knowledge of the molecular mechanisms controlling adrenal steroidogenesis is quite extensive, for decades, the mechanisms of adrenal cortex development, cellular homeostasis and renewal have remained elusive. The advent of new high-throughput technologies and sophisticated genetic approaches has brought tremendous progress in our understanding of how the adrenal cortex achieves and maintains its particular organisation. The aim of this Frontiers in Endocrinology Topic is to provide readers with a snapshot of our current knowledge on adrenal physiology and how deregulations of these processes result in adrenal diseases. This includes but is not limited to, basic research on adrenal development, cell lineage identification, progenitor cells, tissue renewal, control of differentiation and zonation and clinical research on the identification of disease-related genes.
    Keywords: R5-920 ; RC648-665 ; QH301-705.5 ; Q1-390 ; development ; adrenal ; Disease ; Hyperplasia ; Insufficiency ; zonation ; Physiology ; Adenoma ; Cancer ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...