ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Molecular genetics. ; Cancer. ; Genetics. ; Biochemistry. ; Biological transport. ; Cell membranes. ; Molecular Genetics. ; Cancer Biology. ; Genetics and Genomics. ; Biochemistry. ; Membrane Trafficking.
    Description / Table of Contents: 1. History of sialic acids, gangliosides and GM3 -- 2. Synthesis of GM3 -- 3. Molecular localization of GM3 in cells -- 4. Basic function of GM3 as an interacting molecule -- 5. GD3 mimetics with a neurite forming capacity -- 6. GM3 as a pathogenic infection receptor -- 7. GM3 and related gangliosides prevent inflammation and atherosclerosis -- 8. GM3 has an anti-tumor capacity -- 9. GM3 suppresses tumor angiogenesis -- 10. Interaction between EGFR and GM3 -- 11. Membrane ganglioside-specific neuraminidase 3 (NEU3) regulates GM3 signaling -- 12. Regulation of GM3-mediated EGFR signaling by NEU3 sialidase -- 13. VEGFR-GM3 interaction in angiogenesis -- 14. GM3, competing with GM1, interaction with urokinase plasminogen activator receptor (uPAR) in endothelial caveolar-lipid rafts inhibits angiogenesis -- 15. GM3 interacts with TGFβ Rs in the epithelial-mesenchymal transition (EMT) during posterior capsular opacification (PCO) formation -- 16. Galectin-1 promotes tumor growth and escapes immune surveillance -- 17. GM3-HGFR, FGFR and PDGFR cancer cell behavior, and IGF-1R in diabetic wound healing -- 18. GM3, caveolin-1 and insulin receptor in insulin resistance -- 19. GM3 suppresses arthritis -- 20. GM3 protects cochlear hair cells and hearing from corti degeneration -- 21. GM3 increases osteoclast differentiation via direct GM3 cooperation with RANKL and IGF-1 -- 22. GM3 in leukemic cells into terminal differentiation -- 23. α2,3-Sialyllactose (3SL) or α2,6-sialyllactose (6SL) of GM3 glycan in innate immunity. .
    Abstract: This book reviews recent progress in understanding of the signaling and biochemistry of GM3 ganglioside in eukaryotic cells. GM3 is the simplest of the gangliosides and the precursor of other gangliosides. It is expressed in the outer leaflet of plasma cell membranes and has roles in the recognition, interaction, binding, adhesion, and motility of cells. In addition, GM3 has been documented to have functional roles in cell migration, proliferation, senescence, and apoptosis. The full range of topics of interest are addressed in the book. The early chapters discuss the synthesis of GM3, its molecular localization in cells, and its basic function as an interacting molecule. The ways in which GM3 exerts its effects via various growth factor receptors are fully explored. Current knowledge of the part played by GM3 in health and disease is discussed in depth. For example, its roles in preventing inflammation, inhibiting tumor angiogenesis and tumor growth, and suppressing arthritis are highlighted, and attention drawn to the significance of GM3 as a driver of impaired wound healing in diabetics. The book will be of interest to all who want a comprehensive update on research in this field.
    Type of Medium: Online Resource
    Pages: VII, 138 p. 32 illus., 26 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811556524
    DDC: 572.8
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Molecular genetics. ; Cancer. ; Genetics. ; Biochemistry. ; Biological transport. ; Cell membranes. ; Molecular Genetics. ; Cancer Biology. ; Genetics and Genomics. ; Biochemistry. ; Membrane Trafficking.
    Description / Table of Contents: Preface: Carbohydrates- the third life chain -- 1. Glycosylation -- 2. N-Glycan and O-glycan glycosylation in eukaryotes -- 3. Sialyltransferase, sialylation and sulfoylation -- 4. Congenital disorders of glycosylation (CDG) of N-glycoprotein -- 5. Neuraminic acids/sialic acids (N-acetyl- and N-glycolylneuraminic acid) -- 6. Biosynthesis of sialic acid -- 7. Neu5Gc (N-glycolylneuraminic acid) -- 8. Gangliosides -- 9. Gangliosides and tumor-associated ganglioside (TAG) modulate receptor-tyrosine kinases (RTKs) -- 10. Sialic acids and TAGs of tumor cells to escape immunesurveillance and immuneediting -- 11. Tumor characteristics in tumor related carbohydrates.
    Abstract: This book presents the latest knowledge and the most recent research results in the field of ganglioside biochemistry. The early chapters cover all relevant background on sialic acids and their biosynthesis, on N-glycolylneuraminic acid (Neu5Gc), which cannot be synthesized by humans, and on general aspects of ganglioside research. Ganglioside adsorption, disorders of ganglioside degradation, and the regulation of gangliosides are thoroughly discussed. A major focus of the book is the role of gangliosides in cancer. Here, the discussion encompasses, for example, the biological importance, antigenicity, and immunological actions of tumor-associated gangliosides (TAGs), the significance of different glycolipids and gangliosides as TAGs, and emerging anti-cancer vaccine strategies. The ability of sialic acids and TAGs of tumor cells to escape immunosurveillance and immunoediting also receives detailed attention. The significance of sialic acids in regulation of the complement system is explained, and the closing chapter focuses especially on the role of sialyl T antigen in cancer. The book will be of value for all who are interested in functional glycobiology and glycomic studies.
    Type of Medium: Online Resource
    Pages: XVI, 214 p. 57 illus., 48 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811558153
    DDC: 572.8
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Cancer. ; Nanomedicine. ; Drug delivery systems. ; Nanotechnology. ; Cancer Nanotechnology. ; Drug Delivery. ; Nanotechnology. ; Nanomedicine and Nanotoxicology.
    Description / Table of Contents: Foreword -- Preface -- Introduction to active smart nanomaterials for biomedical applications -- Cancer cell sensing and therapy using affinity tag-conjugated gold nanoparticles -- Gold nanoparticles enlighten the future of cancer theranostics -- Recent advances in hydrogels smart drug delivery systems -- Carbon-based nanomaterials for biomedical applications -- A new era of cancer treatment: carbon nanotubes as drug delivery tools -- pH- and ion-sensitive materials for control drug delivery -- Thermo-responsive polymers and their application as smart biomaterias -- Redox-responsive polymers and their application in drug delivery systems -- Recent strategies to explore the biomedical applications of nanocellulose -- Tissue engineering using cellulose nanofibrils as Scaffold material -- Use of solidlipid nanoparticles to improve the oral bioavailability of poor soluble drugs -- Applications of dendrimers in drug delivery systems -- Liposomes for drug delivery: progress and problems -- Cubosome nanoparticles for enhanced delivery of anticancer drug -- Layer-by-Layer assemblies for cancer diagnosis and treatment -- Polymeric micelles for drug delivery -- Role of plant-based materials/gums in developing drug delivery systems -- Ethosomes: A novel tool for drug delivery through the skin -- Niosomes as nanoparticular drug carriers: fundamentals and recent applications -- Graphene oxide nanosheets used in photothermal therapy -- Metal doped carbon dots used in bio-imaging and cancer therapy -- Bibliography -- Glossary -- Index.
    Abstract: With the start of 2020, the wrath of pandemic challenged the scientific community to develop more advanced drug delivery approaches for biomedical applications, endowing conventional drugs with additional therapeutic benefits and minimum side effects. Although significant advancements have been done in the field of drug delivery, there is a need to focus towards strategizing novel and improved drug delivery systems that should be convenient and cost-effective to the patients, and simultaneously they should also provide financial benefits to pharmaceutical companies. Controlled drug delivery technology offers ample opportunities and scope for improvising the therapeutic efficacy of drugs via optimizing the drug release rate and time. For this endeavour, smart nanomaterials have served as remarkable candidates for biomedical applications, owing to their ground-breaking properties and design. The development of such nanomaterials requires a broad knowledge related to their physio-chemical properties, molecular structure, mechanisms by which the nanomaterials interact with the cells, and methods by which drugs are released at the site of action. This knowledge must also be allied with the knowledge of signaling crosstalk mechanisms that are modulated by the nanomaterial-drugs composite. It can be anticipated that these emerging drug delivery technologies can facilitate the world to successfully encounter such pandemic outbursts in the future in a cost-effective and time-effective manner. The chapters in this book deal with the advanced technologies and approaches that can benefit advanced students, researchers, and industry experts in developing smart and intelligent nanomaterials for future biomedical applications, and development, manufacturing, and commercialization for controlled and targeted drug delivery.
    Type of Medium: Online Resource
    Pages: XIII, 600 p. 131 illus., 122 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030842628
    Series Statement: Nanotechnology in the Life Sciences,
    DDC: 616.994
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Molecular genetics. ; Cancer. ; Genetics. ; Biochemistry. ; Biological transport. ; Cell membranes. ; Molecular Genetics. ; Cancer Biology. ; Genetics and Genomics. ; Biochemistry. ; Membrane Trafficking.
    Description / Table of Contents: 1. Glycosphingolipids (GSLs) -- 2. Mammal GSL synthesis via ER and Golgi network -- 3. The GSL dependent signaling -- 4. Viral protein interaction with host cells GSLs -- 5. Bacterial toxin protein interaction with host cells GSL -- 6. GSL signaling regulation.
    Abstract: This book presents the latest knowledge and the most recent research results on glycosphingolipid (GSL)-mediated signaling. GSLs are important constituents of the plasma membrane that exert their distinct functions through binding to certain functional proteins. They play a role in various human diseases and also function as human alloantigens. Cellular GSLs are associated with many biological functions such as cellular oncotransformation, phenotype change, neuronal or embryonic development, regulation of cell division, cell–cell interaction, cell attachment, adhesion, and motility, and intracellular signaling via protein–carbohydrate or carbohydrate–carbohydrate interactions. This book opens by providing the key background on GSL glycan–receptor interactions and mammalian GSL synthesis. Up-to-date information is then presented on all aspects of GSL-dependent signaling. Viral protein and bacterial toxin protein interactions with host cell GSLs are examined in depth, and the concluding chapter is devoted to signaling regulation. The book should assist in the further development of new strategies against emerging infectious agents and intractable diseases.
    Type of Medium: Online Resource
    Pages: XVII, 181 p. 30 illus., 25 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811558078
    DDC: 572.8
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.
    Keywords: TA1-2040 ; T1-995 ; similarity measure ; swarm-robotics ; drag-based system ; PID algorithm ; human–robot interaction ; behaviour dynamics ; state constraints ; fair optimisation ; micro mobile robot ; robot ; actuators ; high-gain observer ; turning model LIP ; space robot ; manipulation action sequences ; subgoal graphs ; remotely operated vehicle ; constrained motion ; joint limit avoidance ; curvilinear obstacle ; rehabilitation system ; stability criterion ; system design ; quad-tilt rotor ; iterative learning ; spiral curve ; cable detection ; SEA ; douglas–peuker polygonal approximation ; predictable trajectory planning ; ATEX ; obstacle avoidance system ; kinematic singularity ; collision avoidance ; biologically-inspired ; jumping robot ; differential wheeled robot ; design and modeling ; control efficacy ; robotics ; extremum-seeking ; object-oriented ; non-holonomic mobile robot ; magneto-rheological fluids ; rendezvous consensus ; altitude controller ; master-slave ; switching control ; deep reinforcement learning ; mechanism ; expansion logic strategy ; negative buoyancy ; action generation ; radial basis function neural networks ; unmanned aerial vehicles ; extend procedure ; glass façade cleaning robot ; convolutional neural network ; climbing robot ; micro air vehicle ; car-like kinematics ; variable speed ; machine learning ; dynamical model ; transportation ; geodesic ; unmanned surface vessel ; medical devices ; stopper ; extended state observer (ESO) ; high efficiency ; object mapping ; multi-objective optimization ; hybrid robot ; robot learning ; auto-tuning ; cable disturbance modeling ; manipulation planning ; pesticide application ; high-speed target ; sparse pose adjustment (SPA) ; service robot ; lumped parameter method ; Geometric Algebra ; dynamic coupling analysis ; Thau observer ; tri-tilt-rotor ; industrial robotic manipulator ; hardware-in-the-loop simulation ; robotic drilling ; muscle activities ; small size ; chameleon ; continuous hopping ; wall climbing robot ; hover mode ; 3D-SLAM ; curvature constraints ; PSO ; drilling end-effector ; Rodrigues parameters ; gait adaptation ; static environments ; position/force cooperative control ; snake-like robot ; shape-fitting ; powered exoskeleton ; input saturation ; kinematic identification ; methane ; human–machine interactive navigation ; q-learning ; path following ; hopping robot ; mobile manipulation ; high step-up ratio ; actuatorless ; monocular vision ; stability analysis ; compact driving unit ; snake robot ; non-holonomic robot ; curvature constraint ; phase-shifting ; dialytic elimination ; gesture recognition ; snake robots ; series elastic actuator ; flapping ; servo valve ; motion camouflage control ; biomimetic robot ; minimally invasive surgery robot ; centralized architecture ; trajectory planning ; computing time ; adaptive control law ; kinematics ; facial and gender recognition ; single actuator ; victim-detection ; shape memory alloys ; undiscovered sensor values ; discomfort ; Differential Evolution ; numerical evaluation ; quadruped robot ; coverage path planning ; localization ; MPC ; n/a ; fault diagnosis ; neural networks ; disturbance-rejection control ; sample gathering problem ; cart ; bio-inspired robot ; opposite angle-based exact cell decomposition ; optimization ; safety ; goal exchange ; hierarchical planning ; ocean current ; robot motion ; nonlinear differentiator ; mapping ; finite-time currents observer ; Newton iteration ; inverse kinematics ; deposition uniformity ; spatial pyramid pooling ; hierarchical path planning ; end effector ; head-raising ; fault recovery ; LOS ; path tracking ; non-inertial reference frame ; step climbing ; obstacle avoidance ; sliding mode control ; symmetrical adaptive variable impedance ; lane change ; quadcopter UAV ; singularity analysis ; biped mechanism ; fault-tolerant control ; dynamic neural networks ; mobile robots ; data association ; UAV ; enemy avoidance ; reinforcement learning ; grip optimization ; safety recovery mechanism ; exoskeleton ; dynamic environment ; uncertain environments ; hybrid bionic robot ; potential field ; robot navigation ; cleaning robot ; unmanned aerial vehicle ; non-singular fast-terminal sliding-mode control ; contact planning ; Lyapunov-like function ; piezoelectric actuator ; transition mode ; non-prehensile manipulation ; multiple mobile robots ; Tetris-inspired ; real-time action recognition ; integral line-of-sight ; topological map ; alpine ski ; target tracking ; closed-loop detection ; working efficiency ; mathematical modeling ; curve fitting ; force control ; biped robots ; NSGA-II ; mobile robot ; load carriage ; prescription map translation ; artificial fish swarm algorithm ; Q-networks ; self-reconfigurable robot ; G3-continuity ; autonomous vehicle ; loop closure detection ; excellent driver model ; robots ; graph representation ; regional growth ; target assignment ; evolutionary operators ; intelligent mobile robot ; motion sensor ; exploration ; droplets penetrability ; dynamic uncertainty ; simultaneous localization and mapping (SLAM) ; area decomposition ; multi-criteria decision making ; 4WS4WD vehicle ; biped climbing robots ; skiing robot ; ROS ; decision making ; smart materials ; centrifugal force ; missile control system ; formation of robots ; electro-rheological fluids ; pneumatics ; variable spray ; inertial measurement unit (IMU) ; Robot Operating System ; trajectory interpolation ; formation control ; immersion and invariance ; dragonfly ; parallel navigation ; harmonic potential field ; pallet transportation ; mobile robot navigation ; negative-buoyancy ; grip planning ; manipulator ; position control ; external disturbance ; legged robot ; passive skiing turn ; autonomous underwater vehicle (AUV) ; gait cycle ; path planning ; sliding mode observer ; dynamic gait ; self-learning ; polyomino tiling theory ; coalmine ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.
    Keywords: TA1-2040 ; T1-995 ; similarity measure ; swarm-robotics ; drag-based system ; PID algorithm ; human–robot interaction ; behaviour dynamics ; state constraints ; fair optimisation ; micro mobile robot ; robot ; actuators ; high-gain observer ; turning model LIP ; space robot ; manipulation action sequences ; subgoal graphs ; remotely operated vehicle ; constrained motion ; joint limit avoidance ; curvilinear obstacle ; rehabilitation system ; stability criterion ; system design ; quad-tilt rotor ; iterative learning ; spiral curve ; cable detection ; SEA ; douglas–peuker polygonal approximation ; predictable trajectory planning ; ATEX ; obstacle avoidance system ; kinematic singularity ; collision avoidance ; biologically-inspired ; jumping robot ; differential wheeled robot ; design and modeling ; control efficacy ; robotics ; extremum-seeking ; object-oriented ; non-holonomic mobile robot ; magneto-rheological fluids ; rendezvous consensus ; altitude controller ; master-slave ; switching control ; deep reinforcement learning ; mechanism ; expansion logic strategy ; negative buoyancy ; action generation ; radial basis function neural networks ; unmanned aerial vehicles ; extend procedure ; glass façade cleaning robot ; convolutional neural network ; climbing robot ; micro air vehicle ; car-like kinematics ; variable speed ; machine learning ; dynamical model ; transportation ; geodesic ; unmanned surface vessel ; medical devices ; stopper ; extended state observer (ESO) ; high efficiency ; object mapping ; multi-objective optimization ; hybrid robot ; robot learning ; auto-tuning ; cable disturbance modeling ; manipulation planning ; pesticide application ; high-speed target ; sparse pose adjustment (SPA) ; service robot ; lumped parameter method ; Geometric Algebra ; dynamic coupling analysis ; Thau observer ; tri-tilt-rotor ; industrial robotic manipulator ; hardware-in-the-loop simulation ; robotic drilling ; muscle activities ; small size ; chameleon ; continuous hopping ; wall climbing robot ; hover mode ; 3D-SLAM ; curvature constraints ; PSO ; drilling end-effector ; Rodrigues parameters ; gait adaptation ; static environments ; position/force cooperative control ; snake-like robot ; shape-fitting ; powered exoskeleton ; input saturation ; kinematic identification ; methane ; human–machine interactive navigation ; q-learning ; path following ; hopping robot ; mobile manipulation ; high step-up ratio ; actuatorless ; monocular vision ; stability analysis ; compact driving unit ; snake robot ; non-holonomic robot ; curvature constraint ; phase-shifting ; dialytic elimination ; gesture recognition ; snake robots ; series elastic actuator ; flapping ; servo valve ; motion camouflage control ; biomimetic robot ; minimally invasive surgery robot ; centralized architecture ; trajectory planning ; computing time ; adaptive control law ; kinematics ; facial and gender recognition ; single actuator ; victim-detection ; shape memory alloys ; undiscovered sensor values ; discomfort ; Differential Evolution ; numerical evaluation ; quadruped robot ; coverage path planning ; localization ; MPC ; n/a ; fault diagnosis ; neural networks ; disturbance-rejection control ; sample gathering problem ; cart ; bio-inspired robot ; opposite angle-based exact cell decomposition ; optimization ; safety ; goal exchange ; hierarchical planning ; ocean current ; robot motion ; nonlinear differentiator ; mapping ; finite-time currents observer ; Newton iteration ; inverse kinematics ; deposition uniformity ; spatial pyramid pooling ; hierarchical path planning ; end effector ; head-raising ; fault recovery ; LOS ; path tracking ; non-inertial reference frame ; step climbing ; obstacle avoidance ; sliding mode control ; symmetrical adaptive variable impedance ; lane change ; quadcopter UAV ; singularity analysis ; biped mechanism ; fault-tolerant control ; dynamic neural networks ; mobile robots ; data association ; UAV ; enemy avoidance ; reinforcement learning ; grip optimization ; safety recovery mechanism ; exoskeleton ; dynamic environment ; uncertain environments ; hybrid bionic robot ; potential field ; robot navigation ; cleaning robot ; unmanned aerial vehicle ; non-singular fast-terminal sliding-mode control ; contact planning ; Lyapunov-like function ; piezoelectric actuator ; transition mode ; non-prehensile manipulation ; multiple mobile robots ; Tetris-inspired ; real-time action recognition ; integral line-of-sight ; topological map ; alpine ski ; target tracking ; closed-loop detection ; working efficiency ; mathematical modeling ; curve fitting ; force control ; biped robots ; NSGA-II ; mobile robot ; load carriage ; prescription map translation ; artificial fish swarm algorithm ; Q-networks ; self-reconfigurable robot ; G3-continuity ; autonomous vehicle ; loop closure detection ; excellent driver model ; robots ; graph representation ; regional growth ; target assignment ; evolutionary operators ; intelligent mobile robot ; motion sensor ; exploration ; droplets penetrability ; dynamic uncertainty ; simultaneous localization and mapping (SLAM) ; area decomposition ; multi-criteria decision making ; 4WS4WD vehicle ; biped climbing robots ; skiing robot ; ROS ; decision making ; smart materials ; centrifugal force ; missile control system ; formation of robots ; electro-rheological fluids ; pneumatics ; variable spray ; inertial measurement unit (IMU) ; Robot Operating System ; trajectory interpolation ; formation control ; immersion and invariance ; dragonfly ; parallel navigation ; harmonic potential field ; pallet transportation ; mobile robot navigation ; negative-buoyancy ; grip planning ; manipulator ; position control ; external disturbance ; legged robot ; passive skiing turn ; autonomous underwater vehicle (AUV) ; gait cycle ; path planning ; sliding mode observer ; dynamic gait ; self-learning ; polyomino tiling theory ; coalmine ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.
    Keywords: TA1-2040 ; T1-995 ; similarity measure ; swarm-robotics ; drag-based system ; PID algorithm ; human–robot interaction ; behaviour dynamics ; state constraints ; fair optimisation ; micro mobile robot ; robot ; actuators ; high-gain observer ; turning model LIP ; space robot ; manipulation action sequences ; subgoal graphs ; remotely operated vehicle ; constrained motion ; joint limit avoidance ; curvilinear obstacle ; rehabilitation system ; stability criterion ; system design ; quad-tilt rotor ; iterative learning ; spiral curve ; cable detection ; SEA ; douglas–peuker polygonal approximation ; predictable trajectory planning ; ATEX ; obstacle avoidance system ; kinematic singularity ; collision avoidance ; biologically-inspired ; jumping robot ; differential wheeled robot ; design and modeling ; control efficacy ; robotics ; extremum-seeking ; object-oriented ; non-holonomic mobile robot ; magneto-rheological fluids ; rendezvous consensus ; altitude controller ; master-slave ; switching control ; deep reinforcement learning ; mechanism ; expansion logic strategy ; negative buoyancy ; action generation ; radial basis function neural networks ; unmanned aerial vehicles ; extend procedure ; glass façade cleaning robot ; convolutional neural network ; climbing robot ; micro air vehicle ; car-like kinematics ; variable speed ; machine learning ; dynamical model ; transportation ; geodesic ; unmanned surface vessel ; medical devices ; stopper ; extended state observer (ESO) ; high efficiency ; object mapping ; multi-objective optimization ; hybrid robot ; robot learning ; auto-tuning ; cable disturbance modeling ; manipulation planning ; pesticide application ; high-speed target ; sparse pose adjustment (SPA) ; service robot ; lumped parameter method ; Geometric Algebra ; dynamic coupling analysis ; Thau observer ; tri-tilt-rotor ; industrial robotic manipulator ; hardware-in-the-loop simulation ; robotic drilling ; muscle activities ; small size ; chameleon ; continuous hopping ; wall climbing robot ; hover mode ; 3D-SLAM ; curvature constraints ; PSO ; drilling end-effector ; Rodrigues parameters ; gait adaptation ; static environments ; position/force cooperative control ; snake-like robot ; shape-fitting ; powered exoskeleton ; input saturation ; kinematic identification ; methane ; human–machine interactive navigation ; q-learning ; path following ; hopping robot ; mobile manipulation ; high step-up ratio ; actuatorless ; monocular vision ; stability analysis ; compact driving unit ; snake robot ; non-holonomic robot ; curvature constraint ; phase-shifting ; dialytic elimination ; gesture recognition ; snake robots ; series elastic actuator ; flapping ; servo valve ; motion camouflage control ; biomimetic robot ; minimally invasive surgery robot ; centralized architecture ; trajectory planning ; computing time ; adaptive control law ; kinematics ; facial and gender recognition ; single actuator ; victim-detection ; shape memory alloys ; undiscovered sensor values ; discomfort ; Differential Evolution ; numerical evaluation ; quadruped robot ; coverage path planning ; localization ; MPC ; n/a ; fault diagnosis ; neural networks ; disturbance-rejection control ; sample gathering problem ; cart ; bio-inspired robot ; opposite angle-based exact cell decomposition ; optimization ; safety ; goal exchange ; hierarchical planning ; ocean current ; robot motion ; nonlinear differentiator ; mapping ; finite-time currents observer ; Newton iteration ; inverse kinematics ; deposition uniformity ; spatial pyramid pooling ; hierarchical path planning ; end effector ; head-raising ; fault recovery ; LOS ; path tracking ; non-inertial reference frame ; step climbing ; obstacle avoidance ; sliding mode control ; symmetrical adaptive variable impedance ; lane change ; quadcopter UAV ; singularity analysis ; biped mechanism ; fault-tolerant control ; dynamic neural networks ; mobile robots ; data association ; UAV ; enemy avoidance ; reinforcement learning ; grip optimization ; safety recovery mechanism ; exoskeleton ; dynamic environment ; uncertain environments ; hybrid bionic robot ; potential field ; robot navigation ; cleaning robot ; unmanned aerial vehicle ; non-singular fast-terminal sliding-mode control ; contact planning ; Lyapunov-like function ; piezoelectric actuator ; transition mode ; non-prehensile manipulation ; multiple mobile robots ; Tetris-inspired ; real-time action recognition ; integral line-of-sight ; topological map ; alpine ski ; target tracking ; closed-loop detection ; working efficiency ; mathematical modeling ; curve fitting ; force control ; biped robots ; NSGA-II ; mobile robot ; load carriage ; prescription map translation ; artificial fish swarm algorithm ; Q-networks ; self-reconfigurable robot ; G3-continuity ; autonomous vehicle ; loop closure detection ; excellent driver model ; robots ; graph representation ; regional growth ; target assignment ; evolutionary operators ; intelligent mobile robot ; motion sensor ; exploration ; droplets penetrability ; dynamic uncertainty ; simultaneous localization and mapping (SLAM) ; area decomposition ; multi-criteria decision making ; 4WS4WD vehicle ; biped climbing robots ; skiing robot ; ROS ; decision making ; smart materials ; centrifugal force ; missile control system ; formation of robots ; electro-rheological fluids ; pneumatics ; variable spray ; inertial measurement unit (IMU) ; Robot Operating System ; trajectory interpolation ; formation control ; immersion and invariance ; dragonfly ; parallel navigation ; harmonic potential field ; pallet transportation ; mobile robot navigation ; negative-buoyancy ; grip planning ; manipulator ; position control ; external disturbance ; legged robot ; passive skiing turn ; autonomous underwater vehicle (AUV) ; gait cycle ; path planning ; sliding mode observer ; dynamic gait ; self-learning ; polyomino tiling theory ; coalmine ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-11
    Description: Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion.
    Keywords: TD1-1066 ; T1-995 ; spectral ; Cameroon ; quantitative structural model ; digital hemispherical photograph (DHP) ; environment effects ; human activity ; reference level ; terrestrial laser scanning ; topographic effects ; Guyana ; predictive mapping ; aboveground biomass estimation ; geographic information system ; Pinus massoniana ; 3D tree modelling ; ensemble model ; destructive sampling ; model comparison ; topography ; remote sensing ; forest growing stock volume (GSV) ; local tree allometry ; tree mapping ; gray level co-occurrence matrix (GLCM) ; deforestation ; REDD+ ; sentinel imagery ; geographically weighted regression ; aboveground biomass ; random forest ; random forest (RF) ; silviculture ; agriculture ; crown density ; hazard mapping ; model evaluation ; old-growth forest ; full polarimetric SAR ; subtropical forest ; forest canopy ; forest classification ; low-accuracy estimation ; texture ; LiDAR ; Landsat ; phenology ; airborne laser scanning ; tall trees ; machine learning ; forest baseline ; overstory trees ; support vector machine ; above-ground biomass ; multispectral satellite imagery ; crown delineation ; specific leaf area ; forest inventory ; canopy cover (CC) ; voxelization ; forestry ; leaf area ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TQ Environmental science, engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: Imaging and analysis are widely involved in various research fields, including biomedical applications, medical imaging and diagnosis, computer vision, autonomous driving, and robot controls. Imaging and analysis are now facing big changes regarding intelligence, due to the breakthroughs of artificial intelligence techniques, including deep learning. Many difficulties in image generation, reconstruction, de-noising skills, artifact removal, segmentation, detection, and control tasks are being overcome with the help of advanced artificial intelligence approaches. This Special Issue focuses on the latest developments of learning-based intelligent imaging techniques and subsequent analyses, which include photographic imaging, medical imaging, detection, segmentation, medical diagnosis, computer vision, and vision-based robot control. These latest technological developments will be shared through this Special Issue for the various researchers who are involved with imaging itself, or are using image data and analysis for their own specific purposes.
    Keywords: TA1-2040 ; T1-995 ; statistical body shape model ; weighted kernel density estimation (WKDE) ; greedy projection triangulation ; n/a ; classification methods ; image classification ; intelligent evaluation ; magnetic resonance image ; computational efficiency ; pixel extraction ; convolutional kernel parameter ; computer-aided manufacturing ; long-term and short-term memory blocks ; cavitation bubble ; data imbalance ; optimization arrangement ; sharpness ; convolutional neural networks ; grey level co-occurrence matrix ; image processing ; adaptive evaluation window ; Contrast Tomography (CT) ; semi-automatic segmentation ; mesh partitioning ; non-referential method ; correlation ; PL-SLAM ; contrast ; computer vision ; conformal mapping ; iterative closest points ; image inspection ; intervertebral disc ; shape from focus ; threshold selection ; rail surface defect ; super-resolution ; face sketch synthesis ; normal distribution operator image filtering ; underwater visual localization method ; spline ; high dynamic range ; image enhancement ; image alignment in medical images ; feature extraction ; incrementally probabilistic fusion ; human parsing ; face sketch recognition ; segmentation ; depth-estimation ; self-intersection penalty term ; road scenes ; surface defect of steel sheet ; signed pressure force function ; patient-specific nuss bar ; minimally invasive surgery ; active contour model ; convolutional neural network ; CRF regularization ; motion deburring ; Inception-v3 ; computerized numerical control bending machine ; machine learning ; midsagittal plane extraction ; wear measurement ; OpenCV ; lumbar spine ; local registration ; defect inspection ; graph-based segmentation ; Image processing ; sprocket teeth ; image analysis ; dual-channel ; geological structure images ; defect detection ; saliency detection ; gradient detection ; medical image classification ; low-rank and sparse decomposition ; mesh parameterization ; deviation of strabismus ; 3D pose estimation ; MR spine image ; pectus excavatum ; automated cover tests ; symmetry detection ; automatic training ; medical image registration ; computer-aided design ; PCA ; misalignment correction in MRI ; local correlation ; synthetic aperture radar (SAR) ; pre-training strategy ; sparse feedback ; three-dimensional imaging ; image retrieval ; joint training model ; spatial information ; additional learning ; colorfulness ; nuss procedure ; gray stretch maximum entropy ; vertebral body ; multimodal medical image registration ; machine vision ; deep learning ; point cloud registration ; image restoration ; image segmentation ; segnet ; line segment features ; UAV image ; image adjustment ; pupil localization ; residual block ; transfer learning ; CT image ; U-net ; reverse engineering ; texture mapping ; image denoising ; water hydraulic valve ; fault pattern learning ; fine grain segmentation ; 3D semantic mapping ; level set ; GoogLeNet ; oil slicks ; capacity optimization ; defect segmentation ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...