ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2021 South Sandwich Earthquake  (1)
  • 550 - Earth sciences  (1)
  • impact forecasting  (1)
  • English  (3)
Collection
Keywords
Language
  • English  (3)
Years
  • 1
    Publication Date: 2023-11-27
    Description: On 12 August 2021, a 〉220 s lasting complex earthquake with M〈sub〉w〈/sub〉 〉 8.2 hit the South Sandwich Trench. Due to its remote location and short interevent times, reported earthquake parameters varied significantly between different international agencies. We studied the complex rupture by combining different seismic source characterization techniques sensitive to different frequency ranges based on teleseismic broadband recordings from 0.001 to 2 Hz, including point and finite fault inversions and the back‐projection of high‐frequency signals. We also determined moment tensor solutions for 88 aftershocks. The rupture initiated simultaneously with a rupture equivalent to a M〈sub〉w〈/sub〉 7.6 thrust earthquake in the deep part of the seismogenic zone in the central subduction interface and a shallow megathrust rupture, which propagated unilaterally to the south with a very slow rupture velocity of 1.2 km/s and varying strike following the curvature of the trench. The slow rupture covered nearly two‐thirds of the entire subduction zone length, and with M〈sub〉w〈/sub〉 8.2 released the bulk of the total moment of the whole earthquake. Tsunami modeling indicates the inferred shallow rupture can explain the tsunami records. The southern segment of the shallow rupture overlaps with another activation of the deeper part of the megathrust equivalent to M〈sub〉w〈/sub〉 7.6. The aftershock distribution confirms the extent and curvature of the rupture. Some mechanisms are consistent with the mainshocks, but many indicate also activation of secondary faults. Rupture velocities and radiated frequencies varied strongly between different stages of the rupture, which might explain the variability of published source parameters.
    Description: Plain Language Summary: The earthquake of 12 August 2021 along the deep‐sea trench of the South Sandwich Islands in the South Atlantic reached a magnitude of 8.2 and triggered a tsunami. The automatic earthquake parameter determination of different agencies showed very different results shortly after the earthquake and partially underestimated the tsunami potential of the earthquake. A possible reason was the complex rupture process and that the tsunami was generated by a long and shallow slow slip rupture sandwiched between more conventional fast slip subevents at its northern and southern ends. In addition, the fault surface, which extended over 450 km, was highly curved striking 150°–220°. We investigated the different components of the seismic wavefields in different frequency ranges and with different methods. The analysis shows how even complex earthquakes can be deciphered by combining analyzing methods. The comparison with aftershocks and the triggered tsunami waves confirms our model that explains the South Sandwich rupture by four subevents in the plate boundary along the curved deep‐sea trench. Here, the depth, rupture velocities, and slip on each segment of the rupture vary considerably. The method can also be applied to other megathrust earthquakes and help to further improve tsunami warnings in the future.
    Description: Key Points: A combination of multiple approaches, inversion setups, and frequency ranges deciphered the complex earthquake of 2021 South Sandwich. The rupture consisted of four subevents with the largest occurring as a shallow slow rupture parallel to the South Sandwich Trench. Forward modeling proves that the large, shallow thrust subevent caused the recorded tsunami.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Agencia Nacional de Investigación y Desarrollo http://dx.doi.org/10.13039/501100020884
    Description: https://ds.iris.edu/wilbert3/find_event
    Description: https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics
    Description: http://www.ioc-sealevelmonitoring.org/
    Description: https://doi.org/10.7289/V5C8276M
    Description: https://www.gfz-potsdam.de/en/software/tsunami-wave-propagations-easywave
    Keywords: ddc:551.22 ; 2021 South Sandwich Earthquake ; seismic characteristics ; tsunamigenic characteristics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-27
    Description: Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe.
    Keywords: 550 ; impact forecasting ; natural hazards ; early warning
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  The Andes - Active Subduction Orogeny | Frontiers in Earth Sciences
    Publication Date: 2020-02-12
    Description: The Andes were formed by Cenozoic tectonic shortening of the South American plate margin overriding the subducting Nazca Plate. Using coupled, thermo-mechanical, numerical modeling of the dynamic interaction between subducting and overriding plates, we searched for factors controlling the intensity of the tectonic shortening. From our modeling, constrained by geological and geophysical observations, we infer that the most important factor was fast and accelerating (from 2 to 3 cm yr(hoch)-1) westward drift of the South American Plate, whereas possible changes in the convergence rate were not as important. Other important factors are the crustal structure of the overriding plate and the shear coupling at the plate interface. The model in which the South American Plate has a thick (40-45 km at 35 Ma) crust and relatively high friction coefficient (0.05) at the Nazca-South American plate interface generates more than 300 km of tectonic shortening over the past 35 million years and replicates well the crustal structure and evolution of the high Central Andes, However, modeling does not confirm that possible climate-controlled changes to the sedimentary trench-fill during the last 30 million years might have significantly influenced the upperplate shortening rate. The model with initially thinner (less than 40 km) continental crust and a lower friction coefficient (less than 0.015) results in less than 40 ikm of shortening in the South American Plate, replicating the situation in the Southern Andes. During upper-plate deformation, the processes that cause a reduction in lithospheric strength and an increase in interplate coupling are particularly important. The most significant of these processes appears to be: (1) delamination of the lower crust and mantle lithosphere, driven by gabbro-eclogite transformation in the thickening lower crust, and (2) mechanical failure of the foreland sediments. The modeling demonstrates that delaminating lithosphere interacts with subduction-zone corner flow, influencing both the rate of tectonic shortening and magmatic-arc productivity, and suggests an anti-correlation between these two parameters. Our model also predicts that the down-dip limit of the frictional coupling domain between the Nazca and South American Plates should be ~15-20 km deeper in the Southern Andes (south of 28° S) compared to the high Central Andes, which is consistent with GPS and seismological observations.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...