ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI G3-24-95728
    Description / Table of Contents: This atlas is an attempt to translate and consolidate the available knowledge on permafrost. It is a timely book suffused with the compelling enthusiasm of its authors and contributors. Close to a hundred individuals participated in its making, and it does a magnificent job at describing permafrost with maps, words, art, and stories. Far from being an academic product in the traditional sense, it gathers the knowledge from the voices of scientists, Indigenous Peoples, northern residents, and local practitioners to provide a holistic and inclusive view of today’s challenges in the “country of permafrost”.
    Type of Medium: Monograph available for loan
    Pages: 174 Seiten , Illustrationen
    Language: English
    Note: Contents Foreword Prologue Earth’s Freezer: Introduction to Permafrost Frozen grounds: Permafrost in the Arctic Permafrost in profile: Landscape features Frozen in time: The history of permafrost An icy balance: Arctic permafrost physiography What lies within: Organic carbon in permafrost When ice grows up: Pingo Canadian Landmark Drilling down: Learning the secrets of permafrost Portrait: Annett Bartsch Un/settled: Life on frozen ground Frozen States I: Russian Federation Portrait: Vyacheslav Shadrin Frozen States II: North America Portrait: Jessi Pascal Frozen States III: Nordic region Portrait: Palle Jeremiassen Awakening Giant: Permafrost and Climate Change Warming up, warming down: Increasing ground temperatures The chill is gone: Thickening of the active layer Disappearing act: Declining permafrost extent Microorganisms, macro effects: Permafrost carbon cycle Faster, deeper, stronger I: Speed of thaw in North America Faster, deeper, stronger II: Speed of thaw in Scandinavia and the Russian Federation Crossing the threshold: Future scenarios of carbon release Portrait: Dmitry Streletskiy Moving Grounds: Permafrost Changes Frost and flora: The role of vegetation in permafrost landscapes Fire on ice: Peat, permafrost, and fire State of matter: Water, snow, and permafrost The rivers run through it: Arctic rivers, deltas and hydrology Along the edge of the world: Arctic coastal classification Wear and tear: Erosion of Arctic permafrost coasts Eating into the landscape: Retrogressive thaw slumps Portrait: Angus Alunik Losing ground: Projected rates of Arctic coastal erosion Beneath the waves: Changes in subsea permafrost Arctic Ripples: Impacts of Permafrost Thaw Feeling the heat: Permafrost thaw impacts on infrastructure Risky business I: North American Arctic and Kalaallit Nunaat (Greenland) Risky business II: The Russian Federation and Scandinavian Arctic Terra infirma I: Coastal infrastructure in Yamalo-Nenets Portrait: Susanna Gartler Terra infirma II: Reinforcing runways in Paulatuk Terra infirma III: Keeping cold food cold in Alaska Terra infirma IV: Urban planning in Ilulissat Nothing in isolation: Health and wellness and permafrost Portrait: Gwen Healey Akearok Toxic grounds: Contaminants and environmental health Coming back to life: Reemerging pathogens Frozen assets I: The formal economy Frozen assets II: Traditional and subsistence activities Cultural homeland: Alaas landscapes in Yakutia Holding Tight: Adaptation to Permafrost Thaw Bumpy road ahead: Transportation infrastructure and permafrost Undermined: Mining infrastructure and permafrost Keeping the light on: Energy infrastructure and permafrost No time to waste: Waste management and permafrost Modern history: Preserving Svalbard’s cultural heritage Portrait: Ingrid Rekkavik Going South: Permafrost in Other Areas A planetary perspective: Permafrost outside the Arctic Frozen giants: Permafrost in the mountains The view from the top: The Qinghai-Tibetan Plateau, Hindu Kush Himalaya, and Andes Europe’s frozen heart: Permafrost in the Alps The ends of the Earth I: Permafrost in Antarctica The ends of the Earth II: Antarctic Peninsula The ends of the Earth III: Queen Maud Land, Victoria Land, and the McMurdo Dry Valleys Over the Horizon Authors and contributors Acknowledgments Artist spotlight: Olga Borjon-Privé (Oluko) Artist spotlight: Katie Orlinsky Glossary Acronyms References
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: E-book
    Description / Table of Contents: This atlas is an attempt to translate and consolidate the available knowledge on permafrost. It is a timely book suffused with the compelling enthusiasm of its authors and contributors. Close to a hundred individuals participated in its making, and it does a magnificent job at describing permafrost with maps, words, art, and stories. Far from being an academic product in the traditional sense, it gathers the knowledge from the voices of scientists, Indigenous Peoples, northern residents, and local practitioners to provide a holistic and inclusive view of today’s challenges in the “country of permafrost”.
    Type of Medium: 12
    Pages: 1 Online-Ressource (174 Seiten) , Illustrationen
    Language: English
    Note: Contents Foreword Prologue Earth’s Freezer: Introduction to Permafrost Frozen grounds: Permafrost in the Arctic Permafrost in profile: Landscape features Frozen in time: The history of permafrost An icy balance: Arctic permafrost physiography What lies within: Organic carbon in permafrost When ice grows up: Pingo Canadian Landmark Drilling down: Learning the secrets of permafrost Portrait: Annett Bartsch Un/settled: Life on frozen ground Frozen States I: Russian Federation Portrait: Vyacheslav Shadrin Frozen States II: North America Portrait: Jessi Pascal Frozen States III: Nordic region Portrait: Palle Jeremiassen Awakening Giant: Permafrost and Climate Change Warming up, warming down: Increasing ground temperatures The chill is gone: Thickening of the active layer Disappearing act: Declining permafrost extent Microorganisms, macro effects: Permafrost carbon cycle Faster, deeper, stronger I: Speed of thaw in North America Faster, deeper, stronger II: Speed of thaw in Scandinavia and the Russian Federation Crossing the threshold: Future scenarios of carbon release Portrait: Dmitry Streletskiy Moving Grounds: Permafrost Changes Frost and flora: The role of vegetation in permafrost landscapes Fire on ice: Peat, permafrost, and fire State of matter: Water, snow, and permafrost The rivers run through it: Arctic rivers, deltas and hydrology Along the edge of the world: Arctic coastal classification Wear and tear: Erosion of Arctic permafrost coasts Eating into the landscape: Retrogressive thaw slumps Portrait: Angus Alunik Losing ground: Projected rates of Arctic coastal erosion Beneath the waves: Changes in subsea permafrost Arctic Ripples: Impacts of Permafrost Thaw Feeling the heat: Permafrost thaw impacts on infrastructure Risky business I: North American Arctic and Kalaallit Nunaat (Greenland) Risky business II: The Russian Federation and Scandinavian Arctic Terra infirma I: Coastal infrastructure in Yamalo-Nenets Portrait: Susanna Gartler Terra infirma II: Reinforcing runways in Paulatuk Terra infirma III: Keeping cold food cold in Alaska Terra infirma IV: Urban planning in Ilulissat Nothing in isolation: Health and wellness and permafrost Portrait: Gwen Healey Akearok Toxic grounds: Contaminants and environmental health Coming back to life: Reemerging pathogens Frozen assets I: The formal economy Frozen assets II: Traditional and subsistence activities Cultural homeland: Alaas landscapes in Yakutia Holding Tight: Adaptation to Permafrost Thaw Bumpy road ahead: Transportation infrastructure and permafrost Undermined: Mining infrastructure and permafrost Keeping the light on: Energy infrastructure and permafrost No time to waste: Waste management and permafrost Modern history: Preserving Svalbard’s cultural heritage Portrait: Ingrid Rekkavik Going South: Permafrost in Other Areas A planetary perspective: Permafrost outside the Arctic Frozen giants: Permafrost in the mountains The view from the top: The Qinghai-Tibetan Plateau, Hindu Kush Himalaya, and Andes Europe’s frozen heart: Permafrost in the Alps The ends of the Earth I: Permafrost in Antarctica The ends of the Earth II: Antarctic Peninsula The ends of the Earth III: Queen Maud Land, Victoria Land, and the McMurdo Dry Valleys Over the Horizon Authors and contributors Acknowledgments Artist spotlight: Olga Borjon-Privé (Oluko) Artist spotlight: Katie Orlinsky Glossary Acronyms References
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Description / Table of Contents: PREFACE This monograph is a compendium of revised papers which were originally presented at the "Ron Mather Symposium on Four-Dimensional Geodesy", 28-31 March, 1989, held at the University of New South Wales, Sydney, Australia. The symposium had the enthusiastic support of the International Association of Geodesy and the Australian Academy of Sciences. The symposium served two purposes: to honour the achievements of the late Professor Ron S. Mather, the distinguished Australian geodesist who died in 1978, and to review and report on the latest developments in four-dimensional geodesy. Four-dimensional geodesy is a convenient term for those geodetic principles and techniques which yield position, gravity and their time variations. In the past geodesists have tended to think of the earth as a static body, save from occasional savage earthquakes or volcanic eruptions. So, why the need to coin the term "four-dimensional geodesy") Because it explicitly recognises that time is an integral part of understanding geodetic measurements. But let's first identify the scope of modern geodesy. Geodesy has traditionally been concerned with two separate, though closely related, topics: accurate positioning of objects on the earth's surface, and mapping the earth's external gravity field. These are still the fundamental tasks of geodesy, although the spheres of application have now extended into space. However, present and emerging geodetic measurement technologies for gravity field mapping and positioning are sensitive to defolTnations of the earth's surface and gravity field. Within the geodetic community, this new emphasis on accounting for the time-varying characteristics of position and gravity has fundamental principles; in particular the establishment and maintenance of appropriate global reference systems for geodesy. At the same time, there has been a growing recognition by the earth sciences in general of the important role of geodesy in studying earth deformations, as well as atmosphere and ocean dynamic phenomena. The geodetic measurements, for example, are taken over time scales of hours to decades, and occasionally to a century or longer. Though this is only a small part of the whole deformation spectrum, it is a very important one. Geodesy bridges the low frequency part of the spectrum available from geological observations, with the high frequency end observed from, for example, seismic instrumentation. It's role in atmospheric and oceanographic studies is as a unique, high precision remote sensing tool. The revolution in geodesy is not, however, restricted to the measurement technology only. It is true that without the advances of space geodesy and terrestrial metrology, the notion of four-dimensional geodesy is a rather academic one. These advances, which now reveal time-variable signals above the measurement noise level, have important implications for all geodetic activities. The geodetic activities we refer to can be identified as: experiment design and measurement processes; definition and maintenance of highly stabie geodetic reference systems; data analysis; and interpretation of position and gravity results. Ultra high precision measurements are of little use without sophisticated analysis tools to extract the small signals in the data. The interpretation of geodetic results will be in error if insufficient attention is paid to ensuring that the reference systems to which the results relate are themselves stable. Clearly four-dimensional geodesy is as much about concepts and principles, as about computers and geodetic equipment. This diversity is reflected in the papers selected for this book. They range over topics related to the modem measurement tools, the reduction and analysis techniques, to the interpretation of geodetic results within the context of problems currently being investigated in the earth sciences. We would like to thank the International Association of Geodesy and the Australian Academy of Sciences for sponsorship of the Symposium. Unisearch Ltd., the commercial arm of the University of New South Wales, was the managing agent, and staff members of the School of Surveying and of Unisearch Ltd. were involved in the organisation of the Symposium. We would like to gratefully acknowledge these excellent contributions. Let us express also our gratitude for the useful guidance which we received from Prof. K. Lambeck, A. Prof. A. Stolz and Dr. R. Coleman of the Scientific Advisory Committee and the continuous support given by Prof. E.W. Grafarend. Sincere thanks are due to the authors of the selected papers for agreeing to contribute to this Monograph, and for their positive cooperation during the production of this volume.
    Pages: Online-Ressource (264 Seiten)
    ISBN: 9783540523321
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2016-08-23
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...