ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:622.1592  (2)
  • English  (2)
  • 2020-2023  (2)
  • 1980-1984
  • 1950-1954
  • 1930-1934
Collection
Language
  • English  (2)
Years
  • 2020-2023  (2)
  • 1980-1984
  • 1950-1954
  • 1930-1934
Year
  • 1
    Publication Date: 2022-03-24
    Description: The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)‐2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP‐2B borehole. At shallower depths (z 〈 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over‐deepened trough with nearly horizontally layered sediments and a major fault (z 〈 0.5 km) are identified 0.5–1 km south of the DFDP‐2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa.
    Description: Plain Language Summary: The Alpine Fault in New Zealand is a major plate boundary, where a large earthquake will likely occur in the near future. Thus, it is important to understanding the detailed processes of how and where such an earthquake occurs. Many scientists are involved in this work, particularly in the attempt of drilling through the fault zone with a ∼900 m deep borehole. We analyzed new seismic data from this area using sensors in the borehole and at the surface to record small ground movements caused by a vibrating surface source causing waves that travel through the ground. From these data, we obtained a detailed image of the structures in the subsurface, for the first time in 3D, by applying advanced analysis methods. Hence, we can better understand the shape of the glacial valley and of the fault zone, that is, the local structures of the continental plate boundary. We interpret at least 600 m wide zone of disturbed rocks and identify a potential major fractured plane down to about 1 km depth. Our studies may help to understand structures that host earthquakes in this area.
    Description: Key Points: We use focusing prestack depth migration with detailed seismic data to analyze the complex subsurface environment of the Alpine Fault zone. Seismic images show Alpine Fault zone related reflectors at a depth of ∼0.2–1 km dipping ∼40°–56° around the DFDP‐2B borehole. Complex structures within the glacial Whataroa Valley are imaged showing steep valley flanks, faults, and internal sedimentary horizons.
    Description: German Research Foundation (DFG)
    Description: Earthquake Commission (EQC) http://dx.doi.org/10.13039/100012181
    Description: NSERC discovery and Canada Research Chairs Program
    Description: Canadian Foundation for Innovation
    Keywords: ddc:622.1592 ; ddc:551.8
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-17
    Description: Shallow 3‐D reflection seismic surveys using S‐waves have rarely been carried out, even though S‐waves can provide higher resolution subsurface images than P‐waves. We conducted a 3‐D near‐surface multicomponent source and receiver survey in Quaternary sediments. We employed a small electrodynamic seismic source with a horizontal shaking unit operated in two orientations. Three‐component geophones in an orthogonal layout covering an area of 117×99 m2 were used for recording. Changes in weather and ground conditions, including freezing and thawing during acquisition, directly influenced the data quality and resulted in discernible relative time shifts in the data. Our seismic processing flow included a four‐component rotation of the data from the Cartesian acquisition geometry into the ‘natural’ coordinate frame to orient sources and receivers in radial or transverse orientation to separate different S‐wave polarizations. The rotation increased the signal strength and helped, for example, to improve the quality of the images of the basin base. The irregular offset distribution in the common midpoint gathers impedes filtering to suppress surface waves in the f–k domain. We, therefore, applied a common‐reflection surface processing flow. After regularization, we could better remove the energy of the surface waves. Both stacked 3‐D S‐wave volumes of vertical and horizontal polarizations provide images of the Quaternary overdeepened Tannwald Basin that was partly known from previous P‐ and S‐wave 2‐D surveys. Compared to a P‐wave profile adjacent to the volume, however, the S‐wave volumes provide higher resolution images of the basin base and internal structure. The basin base is well mapped in three dimensions and shows undulations that were not obvious from the P‐wave data. Comparing the S‐wave volumes of different polarizations, we find only minor differences in the stacks and interpretations.
    Keywords: ddc:622.1592
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...