ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.5  (3)
  • English  (3)
  • 2020-2023  (3)
  • 2015-2019
  • 1970-1974
  • 1
    Publication Date: 2022-10-05
    Description: The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi‐angle views can be analyzed or acquired.
    Description: Plain Language Summary: When satellites take images of Earth, they usually do so from directly above (or as close to it as is reasonably possible). In this comment, we show that for studies that use imagery of Earth at night, it may be beneficial to take several images of the same area at different angles within a short period of time. For example, different types of lights shine in different directions (street lights usually shine down, while video advertisements shine sideways), and tall buildings can block the view of a street from some viewing angles. Additionally, since views from different directions pass through different amounts of air, imagery at multiple angles could be used to obtain information about Earth's atmosphere, and measure artificial and natural night sky brightness. The main point of the paper is to encourage researchers, funding agencies, and space agencies to think about what new possibilities could be achieved in the future with views of night lights at different angles.
    Description: Key Points: Remote sensing using the visible band at night is more complex than during the daytime, especially due to the variety of artificial lights. Views of night lights intentionally taken from multiple angles provide several advantages over near‐nadir or circumstantial view geometries. Night lights remote sensing would benefit from greater consideration of the role viewing geometry plays in the observed radiance.
    Description: EC H2020 H2020 Societal Challenges http://dx.doi.org/10.13039/100010676
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Slovak Research and Development Agency
    Description: Xunta de Galicia (Regional Government of Galicia) http://dx.doi.org/10.13039/501100010801
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: University of Hong Kong http://dx.doi.org/10.13039/501100003803
    Description: Fonds de recherche du Québec
    Description: EC Emprego, Assuntos Sociais e Inclusão European Social Fund http://dx.doi.org/10.13039/501100004895
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Description: City of Cologne, Germany
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-25
    Description: Titan's paleoclimate after the onset of the putative last major methane outgassing event 700 Myr ago is simulated by a global climate model. If the atmosphere was methane‐depleted prior to outgassing, outgassed methane initially causes warming due to increased greenhouse effect. Further outgassing leads to methane snowfall, which in turn cools the troposphere and surface by an ice‐albedo feedback and thereby initiates a lengthy ice age. Formation of ice sheets begins in the polar region, but with increasing methane inventory the entire globe is eventually covered by surface methane frost as thick as 100 m, with local accumulation on elevated terrains. Among various time‐dependent input parameters the methane inventory by far exerts the greatest control over the climate evolution. As Titan's climate transitions from a dry state via a partially ice‐covered state to a globally ice‐covered state, the circulation and precipitation pattern change profoundly and the tropospheric temperature further decreases. Globally ice‐covered snowball Titan is characterized by weak meridional circulation, weak seasonality and widespread snowfall. Frost ablation begins after the end of outgassing due to photochemical destruction of atmospheric methane. It is conceivable that Titan's polar seas resulted from melting of the polar caps within the past 10 Myr and subsequent drainage to the polar basins. Surface methane frost could only melt when the frost retreated to the polar region, which led to global warming by lowering of the surface albedo at low latitudes and increased greenhouse effect.
    Description: Plain Language Summary: Saturn's moon Titan may have experienced long periods of cold climate in the past when the nitrogen atmosphere contained no methane unlike the present atmosphere. We simulated how Titan's climate may have changed when large amounts of methane were outgassed into such a cold atmosphere as indicated by models of Titan's evolution. The atmosphere can hold a certain amount of methane but the vast majority of outgassed methane condenses out as snow and is deposited on the surface. Bright methane snow on the surface keeps the surface cold and thereby prevents efficient greenhouse warming. Initially, surface methane frost is confined to high latitudes, but eventually the entire globe will be ice‐covered under the assumed total amount of outgassed methane. The seasonal and global pattern of atmospheric circulation and snowfall strongly depend on the degree of frost coverage. The surface frost sublimes away long after outgassing has ceased because methane is destroyed in the atmosphere by photochemistry. Eventually, the polar caps melt, leaving behind the observed polar seas.
    Description: Key Points: Massive methane outgassing into Titan's atmosphere should have caused global ice sheets if the atmosphere was previously depleted in methane. Climate of methane snowball Titan is characterized by weak circulation, low temperature, weak seasonality and widespread snowfall. Melting polar caps in geologically recent past may have resulted in polar seas.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-28
    Description: The winter 2019/2020 showed the lowest ozone mixing ratios ever observed in the Arctic winter stratosphere. It was the coldest Arctic stratospheric winter on record and was characterized by an unusually strong and long‐lasting polar vortex. We study the chemical evolution and ozone depletion in the winter 2019/2020 using the global Chemistry and Transport Model ATLAS. We examine whether the chemical processes in 2019/2020 are more characteristic of typical conditions in Antarctic winters or in average Arctic winters. Model runs for the winter 2019/2020 are compared to simulations of the Arctic winters 2004/2005, 2009/2010, and 2010/2011 and of the Antarctic winters 2006 and 2011, to assess differences in chemical evolution in winters with different meteorological conditions. In some respects, the winter 2019/2020 (and also the winter 2010/2011) was a hybrid between Arctic and Antarctic conditions, for example, with respect to the fraction of chlorine deactivation into HCl versus ClONO2, the amount of denitrification, and the importance of the heterogeneous HOCl + HCl reaction for chlorine activation. The pronounced ozone minimum of less than 0.2 ppm at about 450 K potential temperature that was observed in about 20% of the polar vortex area in 2019/2020 was caused by exceptionally long periods in the history of these air masses with low temperatures in sunlight. Based on a simple extrapolation of observed loss rates, only an additional 21–46 h spent below the upper temperature limit for polar stratospheric cloud formation and in sunlight would have been necessary to reduce ozone to near zero values (0.05 ppm) in these parts of the vortex.
    Description: Key Points: The Arctic stratospheric winter 2019/2020 showed the lowest ozone mixing ratios ever observed and was one of the coldest on record. Chemical evolution of the Arctic winter 2019/2020 was a hybrid between typical Arctic and typical Antarctic conditions. Only an additional 21–46 h below PSC temperatures and in sunlight would have been necessary to reduce ozone to near zero locally.
    Description: International Multidisciplinary Drifting Observatory for the Study of the Arctic Climate (MOSAiC)
    Keywords: ddc:551.5 ; ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...